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The purpose of this paper is to derive a few relations involving Fibo-
nacci numbers; these numbers are defined aceording'td the expressions

fn+1 f +f 1af O f

due to Girard [1]. They can also be obtained from a known [2] matrix repre-
sentation that we rederive in Part II. In Part III we obtain the sum of two
infinite series and some recurrence.relations.

PART 1: HISTORICAL NOTE

The sequence of integers {f,} was discovered by ‘Leonardo Pisano [3, 4],
in his Liber Abacci, as the solution to a hypothetical problem concerning the
breeding of rabbits; in this problem, Pisano admitted that the rabbits never
die, that each month every pair begets a new .-pair that ‘becomes productive
at the age of two months. The experiment begins in the first month with a
newborn pair. Fibonacci numbers occur in many different areas. In geometry,

for instance, in Euclid's goldenﬂsectioﬁ problem where the number %(/3'— 1)

appears. In the botanical phenomenoﬁvcelied phyllotaxis, where it is well
known that in some trees the leaves are dlsposed in the spirals accordlng to
the Fibonacci sequence “

1123 In
1! 2’ 3’ 5; e fn+1 ‘
that results from the expansion of %(/gl——l)'giﬂ continued fractions. It is

also known that in the sunflower the number of spirals usually present are
the Fibonacci numbers 34 and 55; in the giant sunflower they are 55 and 89,
and recent experiments have reported that sunflowers of 89 and 144 as well
as 144 and 233 spirals also exist. ' These are all Fibonacci numbers.

| PART I1:. THEORY
Consider the numbers fy,_k =0; 1, 2, ..., defined by

f fi 1 1\k -
e.1n kil - ( -
: , o
7R,
“For k = 1, we have f| = fg, fl fl, and fz iy . Let us suppose that

fi = f, is valid for arbitrary n. It is easily. seen from (2.1) that f] = f,
is also valid for n n + 1, since we -have from (2.1) that

, n+2 f%+1 + f f;+2’ f¥+1 = f;\+ f; 1 = fne1-
',We see then that (2.1) defines the ‘Fibonacei numbers f;.
Define the matrices F(n) and 4 accordlng to the follow1ng expressions:

e
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fasi T (1 i>
(2.2) F(n) = = 4% 4=
) fn fn-l l 0

It is easily proved that the above equation contains Lucas' definition
of Fibonacci numbers:

2.3) £ - Tlg[(l +2 /5“>n . _(1 —z/g)n];

in fact, the eigenvalues of 4 are A, = %(l + /3} and A, = %{1 - ¥/5). We see

therefore that the matrix that diagonalizes 4 is given by

oAy a,A, .
(2.4) U= , where o = (1 + A3)7Y2,
Oy Oy .

. Ay, O
UPAU = A = .
, 0 A

We have then, from (2.2),
(2.5) F(n) = UN'U™Y,

which explicitly reads as:

n+l n+1l n
fn+l fn 1 >\1 - >\2 )\1 - >\121
=T n-1 n-1
£, fia) B\ ow-n M-
PART [11: SERIES AND RECURRENCE RELATIONS

From (2.2), We write the following expression:
. = l . A -
(3.1) LS F(n) = eb -1,
- T n!

from which we infer that

(3.2) YL utrmy = et - 1.
T n!
The matrix elements are given by:
- /5
(3.3) [U7'P (U], = %(f;+1 t ) 5 =0

[0 'Fm)U],, = -[UTFm)U],, = %fm = fy = fa-1) = 0

[0 FU],; = 2y + Fuon) - o fy = B
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From (3.1), the following series are derived:

@ 26@& ) ZE
(3.4) %Z'—fn = '7—-5— sinh < 2 >

fi?%{f941 + fo_y) = 2¢¥* cosh <%§>,
0 .

where we extended Fibonacci numbers to negative values according to

Fon = (D",
We now set 4 = 1 + B in (2.2) to obtain
n
- N\pk
(3.5) F(n) = %:(k>B.

B% can be easily evaluated if we use Cauchy's integral

Bk

2m2) " [ (dz)z*(z - B)"L.
Bk ig given by

f%-l —f%

_f% j;+1

Therefore, we have the following recurrence relations that also define
Fibonacci numbers if we add to them the appropriate boundary conditions

fo=0,f1=l:

> D (F) e

(3.6) Bk

It

F(k) ! = SHLE

(3.7) Foer

It

% ZOI DR (R,

If we multiply (2.2) by (-1)"F(n)~!, we obtain the following orthogon-
ality relations:

(3.8) > Dk (D) Fweres = D7

n+k

é(—l)k (%) fuer = 0

Many important relations can be easily obtained from (2.2), and we just
list a few of them.
The determinant of (2.2) gives

fn+1fn-1 - fnz = (_l)n'

Setting n = § + k and 4™ = A%4% in (2.2) gives the following well-known
recurrence relations:
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(3.9 f.7.‘+k~_~1 = f.;'tlfkil + f;f,;,
f:i+k = f.;'+1fk + f:ffk+1'

From the above, or from F(np) = F(n)?, we are also able to obtain other
familiar expressions such as:

(3.10) Foner = F2 + Fiurs
f;ﬂ" = foer + Faca
fan = fj+1 + fj - :-1;
f;: i e M
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A NOTE ON BASIC M-TUPLES
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Deﬁinétion 1: A set of integers {bi}iZI will be called a base for the set of
all integers, whenever every integer #n can be expressed uniquely in the form

@ J
n = E a;b;, where a; = 0 or 1 and 2: a; < o,

i=1 i=1

Now, a sequence {di}i>1 of odd numbers will be called basic whenever the se-

quence {di Zi'%izl is a base. If the sequence {di} of odd integers is

121
such that d;4+s = dg for all Z's, then the sequence is said to be periodic mod
g and is denoted by {dl, d,, d3,...,d8}. In reference [2], I have obtained

some results concerning nonbasic sequence with periodicity mod 3 or nombasic
triples. In this paper, we are concerned with basic sequence.

Theornem 1: A necessary and sufficient condition for the sequence {di}¢>1 of

odd integers, which is periodic mod s, to be basic is that



