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For example, by m = 2, we find again formula (1) under the term 

For three variables, xl9 x2, x39 m = 3, we have (v = V2) : 
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This paper will prove that essentially only the obvious recurrences have 
almost all primes as divisors. An integer n is a divisor of a recurrence if 
n divides some term of the recurrence. In this paper, "almost all primes" 
will be taken interchangeably to mean either all but finitely many primes or 
all but for a set of Dirichlet density zero in the set of primes. In the 
context of this paper, the two concepts become synonymous due to the Froben-
ius density theorem. Our paper relies on a result of A. Schinzel [2], whose 
paper uses "almost all" in the same sense. 

Let {wn} be a recurrence defined by the recursion relation 

(1) wn+2 = awn+1 + bwn 

where a, b9 and the initial terms wQ9 w1 are all integers. We will call a 
and b the parameters of the recurrence. Associated with the recurrence (1) 
is its characteristic polynomial 

(2) x2 - ax - b = 0, 

with roots a and 3, where a 4- 3 = a and a3 = ~b. 
Let 

D = (a - 3)2 = a2 + kb 
be the discriminant of this polynomial. 

In general, if D ± 0, 

(3) wn = oxan + c23n
5 

where 
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(4) ex = (wx - w0B)/(a - B) 

and 

(5) c2 = (w0a - wj/ia - B). 

We allow n to be negative in (3), though then wn is rational but not neces-
sarily integral. 

There are two special recurrences with parameters a and b which we will 
refer to later. They are the Primary Recurrence (PR) {un} with initial terms 
u0 *=0, wx =1 and the Lucas sequence {vn} with initial terms yQ = 2 and ̂ j =a. 
By (4) and (5) we see that the nth term of the PR is 

(6) un = (a" - Bn)/(a - B) 

and the nth term of the Lucas sequence is 

(7) vn = an + Bn. 

The following lemma will help give us a partial answer to the problem of 
determining those recurrences which have almost all primes as divisors. 

LzmmCL 7: Let {wn} be a recurrence with parameters a and b. Let p be a prime. 
If b $ 0 (mod p) , then {wn} is purely periodic modulo p. 

VKOO^i First, if a pair of consecutive terms (wn9Wn + i) is given, the recur-
rence {wn} is completely determined from that point on by the recursion re-
lation. Now, a pair of consecutive terms (wm9wm+i) must repeat (mod p) since 
only p2 pairs of terms are possible (mod p). Suppose (wm9Wm + {) is the first 
pair of terms to repeat (mod p) with m £ 0. But then 

by the recursion relation. Hence, 
wm-i E b~l(wm+1 - awm) (mod p). 

Thus, Wm_i is now determined uniquely (mod p) and the pair (wm_l9W ) repeats 
(mod p) which is a contradiction. Therefore, m = 0 and the sequence is pure-
ly periodic modulo p. 

Thus, we now have at least a partial answer to the question of our title. 
The PR {un} clearly satisfies our problem since any prime divides the initial 
term u0 = 0. Further, any multiple of a translation of this sequence also 
works. The sequence {wn}9 where w0 = TU_n9 wl - ru_n+1 with r rational and 
n >_ 0 clearly has 0 as a term. Moreover, by our previous result, Lemma 1, if 
p)(b9 then p divides some term of {wn}, where w0 = run9 w1 = run + 1 with r 
rational and n >_ 0. Clearly, there are only finitely many primes p dividing 
b. We shall show that these are essentially the only such recurrences satis-
fying our problem. This is expressed in the following main theorem of our 
paper. 

TkzoH.Qjn 1: Consider the recurrence {wn} with parameters a and b. Suppose 

>b + 0, D £ 0, w1 + awQ9 and Wi + B^o • 
Then almost all primes are divisors of the recurrence {wn} if and only if 

w0 = run9 w1 = run + 1 

for some rational p and integer n, not necessarily positive. 
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We will now explore how far we can go towards proving our main theorem 
using just elementary and well-known results of number theory. 

ThdOtKim 2: Consider the recurrence {wn} with parameters a and b. Suppose 
that neither w\ - W0W2 nor (-fc) (w\ - WQW2) is a perfect square. Then, there 
exists a set of primes of positive density that does not contain any divisors 
of {wn}. 
Vh.OO^i It can be proved by induction that 

(8) w2
n - wn_1wn^.1 = (w\ - w0w2)(-b)n~l . 

By the law of quadratic reciprocity, the Chinese remainder theorem, and 
DirichletTs theorem on the infinitude of primes in arithmetic progressions, 
it can be shown that there exists a set of primes p of positive density such 
that 

(-b/p) = 1 and (w\ - W0w2/p) = -1. 
We suppress the details. Now suppose that p divides some term wn_i. Then 

wl - 0 = (w\ - w0w2)(-6)n-1 (mod p). 
But 

(wllp) =1 
and 

{{w\ - w0w2) (-&)"- Vp) = (D(-l) = -1. 
This is a contradiction and the theorem follows. 

Unfortunately, there are recurrences which are not multiples of trans-
lations of PRs and which do not satisfy the hypothesis of Theorem 2. For ex-
ample, consider the recurrence {wn} with parameters a = 3, b = 5, and initial 
terms 5, 21, 88, 369. Then 

w\ - wQw2 = 1 . 

and the conditions of Theorem 2 are not met. However, it is easily seen that 
this recurrence is not a multiple of a translation of the PR with parameters 
3 and 5. 

To prove our main theorem, we will need a more powerful result. 

L&mma, 2: Let L bean algebraic number field. If X and 0 are nonzero elements 
of L and the congruence 

\ x E 0 (mod P) 

is solvable in rational integers for almost all prime ideals P of I, then the 
corresponding equation 

Xx = 0 

is solvable for a fixed rational integer. 

VtiQOJi This is a special case of Theorem 2 of A. Schinzelfs paper [2], 

Before going on, we will need three technical lemmas. 

L&mma 3: In the PR {un} with parameters a and b, suppose that b ^ 0. Then 

u.n = (-l)n + 1 (un/bn) for n >. 0. 

VK.00^i Use induction on n. 

Lojnma 4: Consider the PR {un} with parameters a and b. Then 
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aM = bun.1 + una 
and 

3n = bun.1 + un3 

where n >_ 0. 
Vhjoo^x Notice that 

(9) an + 2 = aa**1 + ban 

and 

(10) 3n + 2 = a3n + 1 + Z>Bn. 

Now use induction on n and the recursion relations (9) and (10). 

Lemma 5: In the recurrence {wn} with parameters a and Z?, suppose that 

D ^ 09 b ^ 09 wl =f OLW0, and ^ + $w0. 

Let y = w1 - W0a and 6 = w1 - W0$ be the roots of the quadratic equation 

x2 - (2wj - aw0)x - (bwl + CCDQWJ - w\) = 0. 
Then 

y/6 = (a/3)n 

for some rational integer n, not necessarily positive, if and only if 

w0 = ru.n9 wl = ru_n+1 

for some rational number r. 

Vtioofa: First we will prove necessity. Suppose that 

y/6 = (a/6)n. 

By hypothesis none of a, 3, Y, o r $ is equal to 0. Then Y = ™ n anc* <5 = m$n 

for some element m of the algebraic number field K = Q(/D). We now claim that 
m is a rational number. Let £& be the fcth term of the PR with parameters 
2w1'- awQ and bwl + a^o^i ~ wi« Then 

tk = (Yk - 6k)/(Y - «). 

In particular, 

t2 = 2wl - aw0 = (m2a2n - m2$2n)/(man - m$n) 
= m(an + 3n) = mvny 

where vn is the nth term of the Lucas sequence with parameters a and b. Hence 

m = (2w1 - awQ)/vn 

is a rational number. Now remember that 

Y = wl - w0a = man and 6 = w1 - w03 = m$n. 
By Lemma 4, we can express an and 3n in terms of un„l9 wn, 06, and 3. Now y 
and 6 are already expressed in terms of wQ9 wl9 a, and 3. We can thus solve 
for w0 ) W1 in terms of a, 3, wn-1, and un. We now use Lemma 3 to express 
w_n in terms of un. If n is positive, we obtain 

(11) w0 = [(-l)nmbn]u_n9 w1 = [(-Dnmbn]u_n + 1. 

If n is negative or zero, we obtain 
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(12) w0 = mu_n, w1 = mu_n+1 

as required. We have now proved necessity. To prove sufficiency, we simply 
reverse our steps in the proof so far. 

We are now ready for the proof of our main theorem. 

Vhoofa o{± TknoSi&m 1: We have already shown the sufficiency of the theorem in 
our remarks following Lemma 1. To prove necessity, suppose that for almost 
all primes p there exists a rational integer n such that p\wn. Then by (3), 

wn = £xan + c2$n = 0 (mod p) 

is satisfiable for some integral n for almost all rational primes p. In the 
algebraic number field K = Q(fD), we thus have 

cxan + c2$n = 0 (mod P) 

for the prime ideals P dividing (p) in K. Thus, 

(a/3)n = -c2/ol = y/6 (mod P) 

by the definition cl9 c2, Y, and 6. Consequently, 

y/6 = (a/B)* (mod P) 

is solvable for almost all prime ideals P in K. Hence, by Lemma 2, 

Y/6 = (a/3)n 

for some rational integer n. Therefore, by Lemma 5, 

w0 = ru_n, w1 = ru_n+1 

for*some rational number v and we are done. 
<f 

For completeness, the next theorem will answer the question of the title 
for those recurrences excluded by the hypothesis of Theorem 1. 
Th2.Oh.2m 3: In the recurrence {wn} with parameters a and b9 suppose that 

(zJo,^) = (0,0), b = 0, D = 0, wl = awQ9 or wl = 3w0. 

Let p denote a rational prime. 
(i) If W0 = 0 and wl = 0 , then p\wn for all n regardless of a and b. 

Note that in this case, the recurrence {wn} is a multiple of the PR {uM}. 
(ii) If b = 0 and (^,1^) + (0,0), then the recurrence {wn} has almost 

all primes as divisors only in the following cases: 
(a) b = 0, a + 0, w0 = 0, and wl 1 0. Then p\w0 for all primes p 

and p\wn9 n >_ 1, if p\awY. Clearly, in this case the recurrence is a multi-
ple of the PR {uM}. 

(b) b = 0, a + 0, ̂ 0 + 0, and wx = 0. Then wn = 0 for n >_ 1 and 
p\wn for all p if n >_ 1. 

(c) b = 0, a = 0. Then p\wn for all p if n > 2. 
(iii) Suppose b = 0, (w0»^i) ^ (0>0), a + 0, and b ^ 0. Then the recur-

rence {w„} has almost all primes p as divisors if and only if U>i f (CI/2)WQ, 
(iv) Suppose that wx = aw0 or wx = gw0. Further, suppose that M s a 

perfect square, w0 + 0, and b ^ 0. Then almost all primes are not divisors 
of the recurrence {wn}< Moreover, p\wn for any n if pj(w1. 
VflOO^i (i) and (ii) can be proved by direct verification, 

(iii) Let af = a/2. It can be shown by induction that 

(13) wn = (ar)n"1(arwQ + (wx - aw0)n). 
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We can assume that ar ? 0 (mod p) since, by hypothesis, ar - 0 (mod p) holds 
only for finitely many primes p. Then if w1 - arWQ f- 0 (mod p) , wn = 0 when 

n = -a'wQ/(Wi - arwQ) (mod p). 

If W1 - arw0 = 0 (mod p) for almost all primes p, then &?]_ = arW0. Hence, by 
(13), 

wn = (ar)nw0 == anw0. 

In this case, the only primes which are divisors of the recurrence are 
those primes which divide afwQ. Note that if the hypotheses of (iii) hold, 
then the only recurrences not having almost all primes as divisors are those 
that are multiples of translations of the Lucas sequence {vn}. 

(iv) Since 

an + 2 = aan + 1 + ban 

and 
e"+ 2 = a g n + 1 + &en, 

it follows that either the terms of the recurrence {wn} are of the form {anWo} 
or they are of thejform {$nw0}. The result is now easily obtained. 

To conclude, we note that as a counterpoise to Theorem 1, which states 
that essentially only one class of recurrences has almost all primes as divi-
sors, there is the following theorem by Morgan Ward [3]. It states that, in 
general, every recurrence has an infinite number of prime divisors. 

TktO^L&n 3 [Wo/id] » In the recurrence {wn} with parameters a and b, suppose 
that b f 0, w1 4 OOJJQ, and w1 ^ $WQ. Then if a/g is not a root of unity, the 
recurrence {wn} has an infinite number of prime divisors. 
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Bodefs law is an empirical approximation to the mean distances of the 
planets from the Sun; it arises from a simply-generated sequence of integers. 
Announced in 1772 by Titius and later appropriated by Bode, it has played an 
important role in the exploration of the Solar System [1], 

The Bode numbers are defined by 

Bi = 4 

B„ = 2""2 x 3 + 4, n = 2, . . . 


