A CONJECTURE IN GAME THEORY

MURRAY HOCHBERG
Brooklyn College, Brooklyn, NY 11210

We consider a team composed of \(n\) players, with each member playing the same \(r\) games, \(G_1, G_2, \ldots, G_r\). We assume that each game \(G_j\) has two possible outcomes, success and failure, and that the probability of success in game \(G_j\) is equal to \(p_j\) for each player. We let \(X_{ij}\) be equal to one (1) if player \(i\) has a success in game \(j\) and let \(X_{ij}\) be equal to zero (0) if player \(i\) has a failure in game \(j\). We assume throughout this paper that the random variables \(X_{ij}, i = 1, 2, \ldots, n, j = 1, 2, \ldots, r\) are independent.

Let \(S_{jn}\) denote the total number of successes in the \(j\)th game. We define the point-value of a team to be

\[
\Psi_n = \min_{1 \leq j \leq r} S_{jn}.
\]

This means that the point-value of a team is equal to the minimum number of successes in any particular game. Clearly,

\[
P(S_{jn} = m) = \binom{n}{m} p_j^m (1 - p_j)^{n-m}, \quad m = 0, 1, 2, \ldots, n,
\]

and

\[
E[\Psi_n] = \sum_{k=0}^{n} k \cdot P(\Psi_n = k) = \sum_{k=0}^{n-1} P(\Psi_n > k)
\]

\[
= \sum_{k=0}^{n-1} P(S_1 > k, S_2 > k, \ldots, S_r > k)
\]

\[
= \sum_{k=0}^{n-1} \prod_{j=1}^{r} P(S_{jn} > k)
\]

\[
= \sum_{k=0}^{n-1} \prod_{j=1}^{r} \sum_{m=k+1}^{n} \binom{n}{m} p_j^m (1 - p_j)^{n-m}.
\]

It follows from the definition of \(\Psi_n\) that the expected point-value for a team is an increasing function of \(n\), i.e.,

\[E[\Psi_n] \leq E[\Psi_{n+1}], \quad n = 1, 2, 3, \ldots\]

Since a team can add players in order to increase its expected point-value, it seems reasonable to define the score to be the expected point-value per player. Namely, we denote the score by

\[
W_n = \frac{1}{n} E[\Psi_n].
\]
Thus, from (1), we obtain

\[(2) \quad W_n = \frac{1}{n} \sum_{k=0}^{n-1} \prod_{j=1}^{n} \sum_{m=0}^{n} \binom{n}{m} p_j^n (1 - p_j)^{n-m}.\]

It is not obvious from (2) how the score varies as the number of players increases. We now prove that \(W_n \) is a strictly increasing function of \(n \) in the special case \(r = 2 \) and \(p_1 = p_2 \). We first prove three lemmas, which are also of independent interest.

Lemma 1: Let a team be composed of \(j \) players, with each member playing the same two games, \(G_1 \) and \(G_2 \). Let the probability of success for each player in both games \(G_1 \) and \(G_2 \) be equal and be denoted by \(p \). Let \(u_j = P\{S_1j = S_2j\} \), for all positive integers \(j \). Then

\[\frac{1}{2\Pi} \int_0^{2\Pi} |p + qe^{i\theta}|^2 \, d\theta = u_j,\]

where \(q = 1 - p \).

Proof: Using the fact that

\[P\{S_1j = m\} = \binom{j}{m} p^m (1 - p)^{j-m}, \quad m = 0, 1, 2, \ldots, j, \quad j, \, i = 1, 2,\]

and the independence of the random variables \(S_1j \) and \(S_2j \), we obtain

\[(3) \quad u_j = \sum_{m=0}^{j} \binom{j}{m}^2 p^{2m} (1 - p)^{2(j-m)}, \quad j = 1, 2, 3, \ldots.\]

We note that if \(f \) is the polynomial \(f(n) = \sum_{n=0}^{j} a_n n^n \), then

\[(4) \quad \frac{1}{2\Pi} \int_0^{2\Pi} |f(e^{i\theta})|^2 \, d\theta = \sum_{n=0}^{j} a_n^2.\]

We now apply the binomial expansion and (4) to the function \(f(n) = (p + qz)^j \), where \(j \) is a positive integer. The binomial expansion yields

\[f(n) = (p + qz)^j = \sum_{n=0}^{j} \binom{j}{n} p^n q^{j-n} z^{j-n},\]

and using (3) and (4), we obtain

\[(5) \quad \frac{1}{2\Pi} \int_0^{2\Pi} |p + qe^{i\theta}|^2 \, d\theta = \sum_{n=0}^{j} \binom{j}{n}^2 p^{2n} q^{2(j-n)} = u_j.\]

Lemma 2: Let \(r = 2, \, p_1 = p_2, \) and \(u_j = P\{S_1j = S_2j\} \), for all positive integers \(j \). Then \(u_j < u_{j-1} \).

Proof: Since

\[|p + qe^{i\theta}|^2 \leq 1, \quad 0 \leq \theta \leq 2\Pi\]

and

\[|p + qe^{i\theta}|^2 < 1, \quad 0 < \theta < 2\Pi,\]

the desired result follows from (5).
Lemma 3: Let \(u_j = P\{S_{1j} = S_{2j}\} \), for all positive integers \(j \) and let \(u_0 = 1 \). Let \(d_j = \Psi_{j+1} - \Psi_j \), \(j = 0, 1, 2, \ldots \), and let \(\Psi_0 = 0 \). Then

\[
\]

Proof: Clearly, \(d_j \) can assume only the values 0 and 1 with the following probabilities:

\[
P(d_j = 0) = 1 - [u_j p^2 + (1 - u_j)p],
\]

\[
P(d_j = 1) = u_j p^2 + (1 - u_j)p.
\]

Since \(E[d_j] = 0 \cdot P(d_j = 0) + 1 \cdot P(d_j = 1) \), we obtain the desired result.

Theorem: Let a team be composed of \(n \) players, with each member playing the same two games, \(G_1 \) and \(G_2 \). Let the probability of success for each player in both games \(G_1 \) and \(G_2 \) be equal and be denoted by \(p \). Then

\[
W_n < W_{n+1}, \ n = 1, 2, 3, \ldots
\]

Proof: Using the definition of \(W_n \), we obtain

\[
W_{n+1} - W_n = \frac{1}{n(n+1)} E[\Psi_{n+1} - \Psi_n] = \frac{1}{n(n+1)} E[\Psi_{n+1} - \Psi_n] - \frac{1}{n(n+1)} E[\Psi_n - \Psi_n].
\]

Using \(d_j \), as defined in Lemma 3, and noting that \(\Psi_n = \sum_{j=0}^{n-1} d_j \), (7) reduces to

\[
W_{n+1} - W_n = \frac{1}{n(n+1)} E\left[n(\Psi_{n+1} - \Psi_n) - \frac{n-1}{n(n+1)} \sum_{j=0}^{n-1} d_j\right].
\]

Using (6), we obtain

\[
W_{n+1} - W_n = \frac{1}{n(n+1)} \left[n(u_n p^2 + (1 - u_n)p) - \sum_{j=0}^{n-1} (u_j p^2 + (1 - u_j)p)\right].
\]

Thus, to prove that \(W_n < W_{n+1} \), it suffices to show that

\[
n(u_n p^2 + (1 - u_n)p) - \sum_{j=0}^{n-1} (u_j p^2 + (1 - u_j)p) > 0.
\]

Proving inequality (8) is equivalent to showing that

\[
nu_n - \sum_{j=0}^{n-1} u_j = \sum_{j=1}^{n} j(u_j - u_{j-1}) < 0.
\]

Since (9) follows from Lemma 2, we conclude that

\[
W_n < W_{n+1}, \ n = 1, 2, 3, \ldots
\]

It is the author's conjecture that in the general case discussed in the beginning of this paper \((n > 2 \) and \(p_1 \) not necessarily equal to \(p_2 \)) that \(W_n \) is a strictly increasing function of \(n \), too. The above proven theorem and some elementary numerical computations suggest the truth of this statement, but the author has not been able to supply a complete proof.
