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1. The four numbers 1, 3,8, 120 have the property that the product of any 
two of them is one less than a square. This fact was apparently discovered 
by Fermat. As one of the first applications of Baker's method in Diophantine 
approximations, Baker and Davenport [2] showed that there is no fifth posi-
tive integer n, so that 

n + 1 , 3n + 1, 8n + 1, and 120n + 1 

are all squares. It is not known how large a set of positive integers {xl9 
x29 . . . 9 xn] can be found so that all x^Xj + 1 are squares for all 1 <_ i < j 
<_ n. 

A solution attributed to Euler [1] shows that for every triple of inte-
gers xl9 x29 y for which xlx2+l = y1 it is possible to find two further in-
tegers x3, xh expressed as polynomials in xl9 x29 y and a rational number x59 
expressed as a rational function in x19 x29 y; so that x^Xj +1 is the square 
of a rational expression xl9 xl9 y for all 1 <_ i < J £ 5. 

In this note we analyze EulerTs solution from a more abstract algebraic 
point of view. That is, we start from a field k of characteristic ±2 and ad-
join independent transcendentals xl9 x29 ..., xm. We then set XjX. +1 = y%j 
and pose two problems: 

I. Find nonzero elements xl9 xl9 ..., xm9 xm+l9 ..., xn in the ring 
R = k[xl9 ..., xm; y129 ..., yn.un] so that xtx. + 1 = y2..9 and 
yic- e R for 1 <. i < j <_ n. 

II. Find nonzero elements x19 x29 ..., xm9 xm+l9 . . . , xn in the field 
K = k(xl9 ..., xm; yl29 ..., 2/m.lfW) so that x^x. + 1 = y^. ; and 
yi{J- e K for all 1 <. i < J £ w. 

In Section 2 we give a complete solution to Problem I for m = 2, n = 3. 
In Section 3 we give solutions for m - 2, n = 4 which include both Eulerfs 
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solution and a solution for m = 3, ft = 4 which generalize the solutions men-
tioned above. 

In Section 4 we present a solution for m = 2 or 3, n = 5 of Problem II, 
which again contains Euler!s solution as a special case. Finally, in Section 
5 we apply the results of Section 4 to Problem II for m = 2, n = 3. 

The case char k = 2 leads to trivial solutions, a: = xx - x2 = ••• = xn, 
zv. . = x + 1. 

Many of the ideas in this paper arose from conversations between Straus 
and John H. E. Cohn. 

2. Solutions for xxx3 + 1 = yl3, x2x3 + 1 = y\3 with 

^ ' i / ] •) ' v ? 1 iC [JJ •] j i /OojVfcGitX/p 1 JL J < 

We s e t v/x1x2 + 1 = £/12 and n o t e t h a t t h e s imul t aneous e q u a t i o n s 

^ 1 ^ 3 + 1 = 2/13 
(i) 

a?2a?3 + 1 = 2/23 

l e a d to a P e l l f s e q u a t i o n 

(2) ^i#23 ~ ^2^13 = Xl ~ X2' 

In B[/x~^9/x~2~] we have t h e fundamental u n i t y l2 + Sx~^xT[ wh ich , t o g e t h e r 
w i th t h e t r i v i a l s o l u t i o n •y13 = z/23 = 1 of ( 2 ) , l e a d s to t he i n f i n i t e c l a s s 
of s o l u t i o n s of (2) which we can exp res s as f o l l o w s : 

(3) 2/23/xl + y13Sx2
 = ±(^7 ± /^i)^y 12 + / ^ 1 ^ 2 ) n » n = 0 , ± 1 , ±2, . . . . 

In o t h e r words , 

±y23(n) = —=.{{/xl ± / ^ ~ ) Q/12 + / S T S J ) " + ( / r , +/^2~)(2/1 2 - / a ; 1 a : 2 ) n ] ; 
2/^2 

±2/ (ft) = ——[(1/S7 ± v/x~l)(y12 + / r ^ ) * - ( ^ + /x~l) (y 12 - /a; a ? 2 ) n ] . 
2v^2 

Once yi39y23 are determined, then #3 is determined by (1). 

The cases ft = 1,2 give Euler!s solutions: 

yi3(l) = X1 + 2 / 1 2 , 2/2 3 ( D = ^ 2 + #12 » ^ s d ) = Xl + X2 + 2 # 12 » 

2/1 3(2) = 1 + 2^ x x 2 + 2a?1z/12, z/23 (2) = 1 + 2x1x2 + 2# 2 2 / 1 2 ; 

. J J 3 ( 2 ) = 42/ 1 2 [ l + 2x x x 2 + (a?x + x2)y12], 

The interesting fact is that 

x3(l)x3(2)- + 1 = [3 + kx^x2 + 2(3?! + x2)y12 ] 2 ; 
and i n g e n e r a l 

^ 3 ( n ) ^ 3 ( n + 1) + 1 = [x3(n)y12 + 2/13 (n)z/23 ( f t ) ] 2 . 

The main theorem of this section is the following (see [3] for a similar 
result). 

TkzoKQJfn 1 .' The general solution of (1) and (2) in R is given by (3) . 

We first need two lemmas. 

Lmma 1: If yl3 >y23 e R are solutions of (2), then, for a proper choice of 
the sign of y23 , we have 
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/x2yl3 - VXly2Z 

where J] i s a u n i t of R[/x1x2] . 

frwo£: Wri te y l3 = A + By 12 , z/23 = C + Zty12, where A9B9C9D e k[x1 9x2 ] . Then 
e q u a t i o n (2) y i e l d s 

(4) x2 - xl = x2(A + By12)2 - x1(C + Dy12)2. 

Under t h e homomorphism of R which maps x1 •*• x9 x2 •> x9 we ge t 

z/12 •> / r 2 + L 4 ( x 1 , # 2 ) •> ,4 0 , # ) = i4(#) , e t c . , 

and (4) becomes 

(5) 0 = x[(A + C) + (B + Z % 1 2 ] [ C 4 - C) + (B - D)y 12 ] . 
Thus, one of the factors on the right vanishes and by proper choice of sign, 
we may assume A(x) = C(x), B{x) = D(x), which is the same as saying that 

A(xl9x2) - C(xl9x2) B(xl9x2) - D(x19x2) 
= j-j ^ — ^ ^ 

X2 ~ X i X2 """ X •] 

wi th P,Q e k[x19x2]. Thus, 

* 2 ^ 1 3 - ^ 2 3 ^ ~ ^ ~ / — 
- = i/13 + /x^(/x~ + Sx~)(P + Qyu) \/x2 

= yl3 + ( ^ + / t f ^ X P + % 1 2 ) e i ? [ v ^ 5 7 ] 
and, i f we s e t 

/x~y + Vx~i/ 
n" = = yx3 + (a?! - / ^ 2 ) (P + Qy12) 

Jx~~2 + /x^ 
we ge t ryn = 1. 

L&mma 2: A l l u n i t s n of i ? [ / x 1 ^ 2 ] a r e of t h e form 

n = K Q / 1 2 + / ^ i ^ 2 ) n 5 K e k*> n = °> ±:L> — • 
VKOOI* Write x ^ = s, xx = x9 x2 = s/#, £ = /s + 1. Then, 

i? = k[x9s/x9Vs + 1] C fe[ic,l/x,t] = i?*. 

We now consider the units, r\*9 of i?*[/s"] and show that they are of the form: 

(6) n* = KX (t + /t2 - l ) n , K e k*; m9n e Z. 
Write T)* = A + B/t2 - 1, where i4 and 5 are polynomials in t with coef-

ficients in k[x9l/x] and proceed by induction on deg A as a polynomial in t, 
If deg A = 0, then S = 0 and i is a unit of k[x9l/x]9 that is, rj = Kzm, 

K e k* 9 m e Z. 
Now assume the lemma true for deg A < n and write 

A = antn + an.1t""1+ .-., S = hn_xtn-1 + bn_2tn-2 + ••• . 

Since r\* is a unit, we get that 

n*rf * = A2 - (t2 - 1)B2 

is a unit of k[x9l/x]. So, comparing coefficients of t2n and t2""1, we get: 
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.2 _ u2 
a* bn-l> anan-l ^n-l^n-2 

Thus, 
rf* = r\*(t + / t ^ - 1) = [tA + (t2)B] + (tB ± A)A2 = 1 

= A1 + B1/tr~- 1, 

where A1 = antn + ] + an_±tn + ••• + U 2 - l)(antn_1 + a„.1tn-2 . ..) , so that 
deg Ai < n and rf'c* is of the form (6) by the induction hypothesis. Therefore 
r]* = n**(£t± A 2 - 1) is also of the form (6). 

Now rfc is a unit of R[vt2 - 1] if and only if KX171 is a unit of R; that 
is, if and only if m = 0. 

Theorem 1 now follows directly from Lemmas 1 and 2 if we write 

/x^y 13 + 1^7^23 = K(y^7 ± y/^7^^i2 + ^x\x^}n 

and get 

*2#13 ~ *1#23 == K ' = !• 
so that K = ±1. 

Note that Theorem 1 does not show that, for any two integers x 9 x2 for 
which xYx2 + 1 is a square, all integers x3 for which x^x3 + 1 are squares; 
i = 1, 2; are of the given forms. But these forms are the only ones that can 
be expressed as polynomials in xl9 x29 Vxlx2 + 1 and work for all such tri-
ples . 

As mentioned above, we have the recursion relations 

#13 (w + 1) = x
xy13 (n) + y12y13(n)9 

y23(n + 1) = x2yl3(n) + yl2y23(n)9 

x3(n + 1) = x1 + x2 + x3(n) + 2x1x2x3(n) + 2y 12y 13 ( n ) # 2 3 M , 
and t h e r e f o r e 

(7) x 3 ( n ) x 3 ( n + 1) + 1 = [z / 1 2 # 3 (n) + z/13 (n)y23 (n) ] 2 , 
so that the quadruple xl9x29x3{n) = x39x3(n + 1 ) + ^4 has the property that 
xiXj + 1 is a square for 1 <. i < j <_ 4. 

From [3, Theorem 3], we get the following. 

ThzosiQJfn 1: x3(m)x3(n) + 1 is a square in R if any only if \m - n\ = 1 . 

Note that while the proof in [3] is restricted to a more limited class of 
solutions, the solutions there are obtained by specialization from the solu-
tions presented here. 

3. Solutions for xtxh + 1 = yjh'9 -£ = 1,2,3 with xh9y ih e R = k[x19x29x3, 
#12 '#i3 '#23] w h e r e Ma = ^Xix3 + 1; 1 <. £ < J <. 3. 

The solution (7) using x3=x3(n)9 x^ = xk(n) as polynomials in xl9x2,yl2 
can be generalized as follows. 

lh2.0K.QM 3: For x = xl + x2 + x + 2xlx2x3 + 2z/12<y 13£/o3 » we have 

xtxh + 1 = y\h9 yik = xiy.k + 2/̂ .2/a ; U,j,k} = {1,2,3}. 

Ptioo£j We have 

^ _ 1 = _i + xl(xjxk + 1) + (xixj. + l)(xixk + 1) + 2xiy12y13yZ3 

= x.(xx + x2 + x3 + 2*^*3 + 2y12yl3y23) 
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Note that since the choice of the sign of y.. is arbitrary, we always get 
two conjugate solutions for xh £ R. This corresponds to the choices 

xh = x3(n ± 1) 

in the previous section. 

TTiefl/Lem 4: The v a l u e s xh i n Theorem 3 a r e the only nonzero e lements of R wi th 
x^xk + 1 squa re s in R for i = 1 , 2 , 3 . 

Pfiooj'- Let xh = P(x19x2,x3 9y12 9y13 9y23) E R where , in order to normal ize t h e 
e x p r e s s i o n we assume t h a t P. i s l i n e a r i n the y. . and P ^ 0. By Theorem 2 , we 
have 

P[xiyx2,x3(n),y12 9yl3 (n) 9y23 (w)] = x3(n + 1) 

for each n = 0, ±1, ±2, ... . Without loss of generality we may assume that 
P = x3(n + 1) for infinitely many choices of n. Then the algebraic function 
of #3 

R\Xl ,X2 5^3 ,y l2 >y i3 iJJ23 ' ~ X\ ~ X2 ~ X3 ~~ ^ i ^ 2 ^ 3 ~ y \2.y \3^ 13 

has infinitely many zeros x3 = x3{ri) and hence is identically 0. 
The values xh in Theorem 3 can be characterized in the following symmet-

ric way. 

Lzmmci 3- Let a^; t = 1, 2, 3, 4 be the elementary symmetric functions of xl9 
x29 x39 xh. Then xh is the value given by Theorem 3 if and only; if 

(8) a2 = 4(a2 + ok + 1). 

VK.00^ I f we w r i t e Z1 5 Z 2 , E3 fo r t h e e lementary symmetric f u n c t i o n s of x , , 
x29 x39 then # = £ 1 + 2 £ + 2 Y where 

Hence 
Y = y y y = A 2 + E E + £ + 1. 

J 1 2 ^ 13*7 2 3 3 1 3 2 

Gx = 2(ZX + E3 + Y) 

(9) a2 = E2 + ^ 4 E 1 = Z2 + Z2 + 2 2 ^ 3 + 2 ^ 7 

Thus, 
* ^ 3 = E 1 E 3 + 2 E 3 + 2 E 3 7 -

a2 = 4 [ I 2 + 2 1 ^ 3 + E3 + 2EXJ + 2E 3 J + J 2 ] 

= 4 [ a 2 + a 4 - E2 - Z ^ - Z3 + (x1x2 +l)(xlx3 + l)(xzx3 + 1 ) ] 

= 4 ( a 2 + a4 + 1 ) . 
Conversely, if we solve the quadratic equation (8) for x^9 we get the two 
values in Theorem 3. 

4. Solutions for x^x5 = y\^\ t = 1, 2, 3, 4 with x 9y , e K = /cfol5^2,^3, 
#12 »2/i3 '#23) w h e r e x4 is given by Theorem 3. 

If we use the xh of the previous section and define 

4a3 + 2ax + 2a,a 
(10) x5 = 

(a, - l) 2 

we get the following. 

ThdOKm 5: We have 
tlx2. - o x. - o - l\2 

x{x5 + 1 = ̂  ah - 1 / ; % = 1' 2' 3' 4' 
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Vhoofc The x^ are the roots of the equation 

(11) x) - ox3. + a9x2: - o„x. + a, = 0 . 
v / i 1 ^ 2 % 3 ^ 4 

Hence 

(12) (c^ - l)2(xix5 + 1) = 4a 3 a^ + 2oxxt + 2 0 ^ ^ + ( a 4 - l ) 2 . 

I f we s u b s t i t u t e ha3xi = 4(x^ - oxx3. + a 2 x 2 + a 4 ) from ( 1 1 ) , we ge t 
(13) (oh - l)2(xix5 + 1) = kx\ - ito^l + ko2x\ + 2 0 ^ + 1 ) ^ + (a 4 + 1 ) : 

- (2a:2 - alxi - ah - l ) 2 - ( a 2 - 4a 4 - 4 - 4 a 2 ) # 

= (2x? - a ^ - oh - l ) 2 , 

since the last bracket vanishes by Lemma 3. 
Thus, the famous quadruple 1, 3, 8, 120 can be augmented by 

777480 
x* 

2 

28792 

We conjecture that the quintuple given by Theorem 5 is the only pair of 
quintuples in which xh is a polynomial in xx 9x29x3 \y l2 »2/13 >£/23 anc*

 x5 ^s ra~ 
tional in these quantities. 

Finally, we show that the value x5 given by Theorem 5 is never an inte-
ger when x19x29x3,y129y13,y23 and, hence, xh and y ^ 9 y ^9 y 3l+ are positive 
integers. 

Tk&Qtim 6: If the quantities x19x2,x39yl2 9y 13 9y2s in Theorem 5 are positive 
integers, then 0 < x5 < 1. 

VKOO^1 Since we have already verified the theorem for the case # = 1, x2 = 
3, x3 = 8, we may assume that 

£l = _J_ + _i_ + _L_ <I + ± + _L = I, 
8 24 2 ' 

and the smallest Ej is obtained for the triple 2, 4, 12. Thus, 

(14) 
S i m i l a r l y 
(14) 18 < E 1 < y E 3 . 

^2 1 1 3 
T3

<1+^ + -s<2 
and 
(15) 80 < E2 < | l 3 . 

Next , J = yizU\zH23 s a t i s f i e s ^ = ^ 3 + ^ 1 ^ 3 + £ 2
+ ^ ~ ' s o t n a t from (14) 

and (15) we ge t 

(16) I 3 + 9 < Y < | ( Z 3 + 1 ) . 
Thus, t h e numerator of 1 - x i s 

(17) (a 4 - l ) 2 - 2oxok - 4a3 - 2ax = (a^ - a 1 - l ) 2 - a2 - 4a3 - 4ax 

= (a 4 - ax - l ) 2 - 4(0^ + a2 + 1) 

- 4a3 - 4ax 

= (a 4 - ax - 3 ) 2 - 4a3 - 4a2 - 8 ^ - 8 
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= (2E2 + 2Z37 + EXE3 - 2Z3 - 21 - 2E2 - 3 ) 2 - 8E2E3 - 8E2I 

- 4EXE2 - 4E3 - 8EXE3 - 8 1 ^ - 4E2 - 4E2 - 16E3 - 167 

- 16EX - 8 

> (4E2 4- 30Z3 - 6) 2 - 12E2 - 18E3(E3 + 1) - 3E2 - 4E3 - 4E2 

- 6E3(E3 + 1) - E2 - 6Z3 - 16E3 - 24(E3 + 1) - 8E3 - 8 

= (4E2 + 30E3 - 6) 2 - 44E2 - 82E3 - 32 

> (4E2 + 30E3 - 12)2 > 0. 

Thus, our algebraic method has the result that for every three positive 
integers x19x2,x3 so that xiXj + 1 is a square for 1 <_i <j £ 3 there always 
exists a fourth positive integer (and usually two distinct fourth integers) 
xh so that XiXh + 1; i = 1, 2, 3, is a square. Finally, there always exists 
a fifth rational number, x59 always a proper fraction, so that x.x5 + 1; i -
1, 2, 3, 4 is a square. 

The question of finding more than four positive integers remains open. 

5. Solutions of x^x3 + 1 = y[\% i = 1,2 with xf
39y f

i3 e K = k(x19x29y12). T n e 

field K = k(xl9x29y12) is, of course, the pure transcendental extension k(xl9 
y ). Sections 4 and 5 show that K contains many solutions -xr

9yf. of equa-
tion (1) that are not in R = k[xl9x29y12] and, therefore, are not given in 
Theorem 1. 

For example, we may define a quadruple x19xz9x3 - x3(n), x,^ = x3(n + 1) 
which satisfies Theorem 3 and then define 

X'(n) = *5 = (a - l ) 2 [ 2 Q l + 4a3 + 2°lG"] 

as in (10) to get an infinite sequence of triples x19x2,x3(n) e K which sat-
isfy (1). The triple x19x29x3(n) can be augmented, by Theorem 3, to a quad-
ruple xl9x29x3(n) 9 xr

k(n)9 where xT(n) has the same denominator 

[oh{n) - l)2 = [x1x2x3(n)x3(n + 1) - l]2 

as x3(n). By Theorem 5, this quadruple can be augmented to a quintuple 

xx 9x2 9x'3 {n) 9x'h(n) ,x^(n). 
Once this process is completed we can start anew, beginning with the triples 
X 1 , X o , X Lin) O X . t-G -I , bL p , oC /(n). Each of the triples can be augmented to quadru-
ples and quintuples, etc. In short, the family of solutions of (1) with x39 
y13 '2/23 £ ^ aPPe a r s to be very large, and is quite difficult to characterize 
completely. 
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