19791 ON EULER'S SOLUTION OF A PROBLEM OF DIOPHANTUS 333

REFERENCES

1. A. F. Horadam. "Polynomials Associated with Chebyshev Polynomials of
the First Kind." The Fibonaceil Quarterly 15, No. 3 (1977):255-257.

2. A. F. Horadam. '"Diagonal Functions." The Fibonacei Quarterly 16, No.1l
(1978) :33-36.

3. D. V. Jaiswal. '"On Polynomials Related to Tchebichef Polynomials of the
Second Kind." The Fibonacei Quarterly 12, No. 3 (1974):263-265.

e nR

ON EULER’'S SOLUTION OF A PROBLEM OF DIOPHANTUS

JOSEPH ARKIN
197 0l1d Nyack Turnpike, Spring Valley, NY 10977
V. E. HOGGATT, JR.
San Jose State University, San Jose, CA 95192
and
E. G. STRAUS*
University of California, Los Angeles, CA 90024

1. The four numbers 1, 3,8, 120 have the property that the product of any
two of them is one less than a square. This fact was apparently discovered
by Fermat. As one of the first applications of Baker's method in Diophantine
approximations, Baker and Davenport [2] showed that there is no fifth posi-
tive integer »n, so that

n+1l, 3n+1, 8 + 1, and 120n + 1

are all squares. It is not known how large a set of positive integers {zy,
Xy, ..., T,} can be found so that all xz;x; + 1 are squares for all 1 < < g
< n.

A solution attributed to Euler [1] shows that for every triple of inte-
gers x,, ,, y for which zx, +1 = yz it is possible to find two further in-
tegers x,, &, expressed as polynomials in x,, x,, y and a rational number X,
expressed as a rational function in x,, x,, y; so that x,x; +1 is the square
of a rational expression x,, Z,, y for all 1 < 7 < g < 5.

In this note we analyze Euler's solution from a more abstract algebraic
point of view. That is, we start from a field k of characteristic #2 and ad-
join independent transcendentals &,, £,, ..., X,. We then set L, +1 = yfj
and pose two problems:

I. Find nonzero elements X;, Lo, +e+s Lps Lyi1s +-+» Ln in the ring

R=k[Zy, «vvy Tys Yyp» =++s Yn_1,n) SO that zyx, + 1 = yfj; and

Yi; € R for 1 <4 <j < m.

II. Find nonzero elements X;, Lo, «oes Lpyy Lpils »=05Ln in thg field
K=Kk(@y, eovy Tps Yizs =vs Ym-1,m) SO that L L+ 1=y;:s and
Yz5 € K for all 1 <1 < g < mn.

In Section 2 we give a complete solution to Problem I for m = 2, n = 3.
In Section 3 we give solutions for m = 2, n = 4 which include both Euler's
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solution and a solution for m = 3, n = 4 which generalize the solutions men-
tioned above.

In Section 4 we present a solution for m = 2 or 3, n = 5 of Problem II,
which again contains Euler's solution as a special case. Finally, in Section
5 we apply the results of Section 4 to Problem II for m = 2, n = 3.

The case char k = 2 leads to trivial solutions, x = &, = x, =
Yy; = x + 1.

Many of the ideas in this paper arose from conversations between Straus
and John H. E. Cohn.

- = X,,

2. Solutions for x;x3 + 1 = y%a, Z,x, + 1 = y3, with
T3,Y,3-Ys3 € R = kla,x,,vVx,2, + 1].
We set vx,x, + 1 = y,, and note that the simultaneous equations

_ 2
Xy + 1= yi,

(L )
Zox3 + 1 =y,

lead to a Pell's equation

2 2
(2) L1235 = XYz =) - Xy
In R[Vx,,/x,] we have the fundamental unit y,, + vx,x, which, together
with the trivial solution y;3 = y,3 = 1 of (2), leads to the infinite class
of solutions of (2) which we can express as follows:

(3) 923/5:.+ y13/5;>= (Y, * VEE)(H12 + Vex,)" s n

In other words,

0, 1, *2,

ty,, () = 271—30_[(@ VT (yy, FVEE) + O, T V5 (yy, - /5@
1
sy () = ;‘/t_c—_[(/éc’l £VT)) (g, + /Em)" - (5, 7 VE) (g, - VEm,)" ]

2
Once y,;,Y,; are determined, then x; is determined by (1).

The cases 7 = 1,2 give Euler's solutions:
Y1s(L) =) + Y5, Yoy (1) =%, + Yy, £,(1) =2 + 2, + 29,3
Y13(2) =1+ 202, + 22,y,,, Y,5(2) =1+ 2x,x, + 22,y ,,;
23(2) = 4y, [1 + 2x,x, + (x; + x,)y,;, 1.
The interesting fact is that

x,(Dx,(2) + 1 = [3 + bz, + 2(x, + 2,)y,, 17
and in general
xy(Mxy(n + 1) + 1= [z,(M)y,, + yls(n)yza(n)]z.

The main theorem of this section is the following (see [3] for a similar
result).

Theorem 1: The general solution of (1) and (2) in R is given by (3).
We first need two lemmas.

Lemma 1: 1f Y,35Y,5 € I are solutions of (2), then, for a proper choice of
the sign of y,,, we have
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/E;yl3 - /5—923

n
v, - ey

where n is a unit of R[Vx,x,].

Proog: Write y,3 = A+ By,,, y,, = C + Dy,,, where 4,B,C,Dek[z, ,x,]. Then
equation (2) yields

(4) x, —x;, =x,(4 + By12)2 - x,(C+ Dylz)z.
Under the homomorphism of A which maps x, *x, x, > x, we get
Yy, >/ F U, ,m,) Az,
and (4) becomes
(5) 0=x[A+C) + (B+Dy,,I[A-0 + (B - D)ylz].

Thus, one of the factors on the right vanishes and by proper choice of sign,
we may assume A(x) = C(x), B(x) = D(x), which is the same as saying that

Ay ,2,) = C(x,2,) P B(xy,x,) = D(x,,x,) 0

Xy — &y

A(x), etc.,

Xy - X,

with P,Q € k[z,,x,]. Thus,
ngyl3 - Vaiyza
Jz - Joy

3
1]
1]

Yo, t %E:(/5;'+ vz ) (P + Qy,,)

[

Yys + (2, + /xlxz)(P +Qy,,) € RlVz x,]
and, if we set

— 2

n= =Yy t @ - VX)) (P F Ayy,)

we get nn = 1.
Lemma Z: All units n of R[Vx,x,] are of the form
n=k(y, +/e,x,)"; ke k¥ n=0, 1,
Proo§: Write @, = s, x, = x, &, = s/x, t = Vs + 1. Then,
R = klx,s/x,/5 + 1] C klx,1/x,t] = R*.
We now consider the units, n*, of R*[V5] and show that they are of the form:
(6) n* = kx (¢ +/t* - 1", ke kK*; m,n € Z.

Write N* = 4 + BY/t? - 1, where A and B are polynomials in t with coef-
ficients in k[x,1/x] and proceed by induction on deg A as a polynomial in Z.

If deg 4 = 0, then B =0 and 4 is a unit of k[x,1/x], that is, n = xkx™,
K e k¥ me 2.

Now assume the lemma true for deg A < »m and write

A=at"+a, t" 4 oo, B=b, " 4 b t"TE 4

]

Since n* is a unit, we get that
nnT* = 4% - (¢* - 1)B?

is a unit of k[x,1/x]. So, comparing coefficients of t2" and t°""!, we get:
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= K2 =
a, = bn—l’ Ay @y bn—lbn-z
or
an = ib‘ﬂ-l’ an—l = ibn_z

% = X (e F /2 - 1) = [t4 T (£D)B] + (B + AVE? = 1
=4, + B/t - 1,

where 4, = a,t"* '+ a, 1 t" + -+ T (% - D (a4 q,_,t""% ...), so that
deg A, < n and n** is of the form (6) by the induction hypothesis. Therefore
n* = n**(¢ + /£2 - 1) is also of the form (6).

Now n* is a unit of R[/#2 - 1] if and only if kx™ is a unit of R; that
is, if and only if m = O.

Theorem 1 now follows directly from Lemmas 1 and 2 if we write

Vi, + “52923 = kW, + Vo) (y, + Voo 22,)"

Thus,

and get
xzyis - x1y§3 = «k* = L.
so that k = #1.

Note that Theorem 1 does not show that, for any two integers x,, x, for
which x,2, + 1 is a square, all integers x; for which x;x3; + 1 are squares;
7 =1, 2; are of the given forms. But these forms are the only ones that can
be expressed as polynomials in x,, x,, vo,&, + 1 and work for all such tri-
ples.

As mentioned above, we have the recursion relations

Yyt 1) =zy,, ) +y,y,,0,

Yos (n+ 1) = zyy,,(n) + y,,y,,(n),
x,(n+ 1)

x, +x, +x,(n) + 20z, (n) + 2y

1 my,, (1),

12¥13
and therefore

(7 e Mz, (n+ 1) +1=[y,z,0 +y,0y,, ],
so that the quadruple x,,x,,x,(n) = x,,2,(n + 1) + x, has the property that
x;x; + 1 is a square for 1 <1 < g <hb.
From [3, Theorem 3], we get the following.
Theorem 2: x (m)x,(n) + 1 is a square in R if any only if |m - n| = 1.

Note that while the proof in [3] is restricted to a more limited class of
solutions, the solutions there are obtained by specialization from the solu-
tions presented here.

3. Solutions for x;x, + 1 = yﬁq; =1, 2, 3 with x,,y;, € R = k[ml,xz,x3,
y12’y13’923] where y,. =vayx; + 15 1 <71 <g <3

The solution (7) using xy=x,(n), x,=x,(n) as polynomials in x, ,x,,Y,,
can be generalized as follows.

Theorem 3: For x, = x, +x, + 2, + 2z,2,0, + 2Y,,Y,,Y,,» we have
wox, + 1=yl y;, = T Y ¥ YU {Z,5,k} = {1,2,3}.

Proog: We have

y%u -1

1]

-1+ x%(xjxk + 1) + (xixj + Dz + 1) + 22,91,Y,3Y0s

= xi(x1 tx, +x,+ lexzxs + 2y12y13y23)

xixu.
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Note that since the choice of the sign of Y, is arbitrary, we always get
two conjugate solutions for x, € R. This corresponds to the choices

x, =x,(n 1)
in the previous section.

Theorem 4: The values x, in Theorem 3 are the only nonzero elements of R with
x;x, + 1 squares in R for ¢ = 1, 2, 3.

Proog: Let xy, = P(X),%5,%3,Y12Y13sY23) € R where, in order to normalize the
expression we assume that P is linear in the Yij and P # 0. By Theorem 2, we
have

Play o, ,0,(1) 51,58, 1)y, ()] = x,(n + 1)

for each n = 0, 1, *2, ... . Without loss of generality we may assume that
P =224 + 1) for infinitely many choices of n. Then the algebraic function
of x4
Py5255%55Y 155y 139025) = &y = &y = By = 288,85 = 24,013,
has infinitely many zeros x, = x,(n) and hence is identically O.
The values x, in Theorem 3 can be characterized in the following symmet-—
ric way.

Lemma 3: Let o;3 7 =1, 2, 3, 4 be the elementary symmetric functions of x,,
x,, £3, Z,. Then x, is the value given by Theorem 3 if and only if

(8) 0d = 4(o, + 0, + 1).

Pnooﬁ: If we write Z,, I,, L, for the elementary symmetric functions of ),
Z,, 3, then z, = I, + 223 + 2Y where

- _ 2
Y=Y ,Y15Y,, = /Es tIy +I, + 1
Hence
0, =2, +Z,+7

= = 2
€D) 0, =%, +xr =3, + I3+ 20T +25Y
2
T,I, + 252 + 21,7

0, = x,XL,
Thus,

0 = 423 4+ 25,5, 4+ T5 + 25,Y + 21,7 + Y7
4lo, + 0, - %, - 5,2, - 22 + (zz, +1)(zx, +1) (@, +1)]
= 4(o, + 0, + 1).

1]

Conversely, if we solve the quadratic equation (8) for x,, we get the two
values in Theorem 3.

4. Solutions for m;x, = yi4; =1, 2, 3, 4 with x sy, €K = kx5, 524,
912’913’923) where x, is given by Theorem 3.

If we use the x, of the previous section and define

4oz + 20, + 20,0,

(10) Ty =

(Oq— 1)2
we get the following.
Theorem 5: We have

in - lei -0, - 1 >
;o t1 T sy 2=1, 2, 3, 4.
n
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Proof: The x; are the roots of the equation

[ 3 2 _
(11) Z,; - 0, + 00y - Oz, + 0, = 0.
Hence
(12) (0, - ) ?(xzxs + 1) = 4ogx; + 20,2, + 20,00, + (0, = 1),

If we substitute 40z,

13) (o, - D(zz, + 1) =

A(xz - Glxz + ozxi + o0,) from (11), we get

b} - 4oz} + ho,xl +20,(0, + Dx; + (0, + 1)?
(2% -

7

oz, - 0, - 1)? - (0% - 4o, - 4 - 402)x§

Qzf - o; - 0, - 12,

since the last bracket vanishes by Lemma 3.
Thus, the famous quadruple 1, 3, 8, 120 can be augmented by

777480
28792 '

We conjecture that the quintuple given by Theorem 5 is the only pair of
quintuples in which x, is a polynomial in &,,%,,X33Y1,,Y,3:Y,; and &y is ra-
tional in these quantities.

Finally, we show that the value x; given by Theorem 5 is never an inte-
ger when L5 %55%35Y 1,5 13903 and, hence, xz, and Yiys Ypyr Ygy 2T€ positive
integers.

5 =

Theonem 6: 1If the quantities X15%ys%35Y 5sY,155Y,; in Theorem 5 are positive
integers, then 0 < x, < 1.

Proof: Since we have already verified the theorem for the case x
3, xy = 8, we may assume that

=1, 2, =

X
B 1, 1,1 11,11
Ty Tz, €T,x, T,2, 3 8 24 2
and the smallest I, is obtained for the triple 2, 4, 12. Thus,
1
(14) 18 < I, <-§Za.
Similarly
Zy 1,1 3
E—3<1+§‘+'8"<7
and
3
(15) 80 <z, < 723.

Next, ¥ = y,,¥,,Y,, satisfies ¥ = /t% + 2,2, + £, +1, so that from (14)
and (15) we get

(16) I, +9 <Y <3, + 1).
Thus, the numerator of 1 - x, is

2
(17) (Ou - 1)° - 20,0, - 40, - 20

2 2
(o, -0, -1 -0] - 40

2
(o, =0y = 1)

3 7 401

4(o, + 0, + 1)

1

- 4o, - 4o,

i

(0, - @, - 3)% - 4oy - 4o, - 80, - 8
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2 2

(225 + 22,Y + 2,7, - 25, - 2Y - 2, - 3)® - 8I,%, - 8IL,Y

- 4., - 4%, - 81,5, - 8L,Y - 4% - 4%, - 163, - 16Y

- 16z, - 8

2
> (435 + 305 - 6)% - 1233 - 18%,(Z, + 1) - 333 - 43, - 432

- 62,(3, +1) - 1§ - 65, - 16Z5 — 24(Z5 + 1) - 83, - 8

= (423 + 30%, - 6)% - 4412 - 823, - 32
> (4%% + 30%, - 12)% > 0.

Thus, our algebraic method has the result that for every three positive
integers x,,x,,x; so that x;x; + 1 is a square for 1 <7 <j < 3 there always
exists a fourth positive integer (and usually two distinct fourth integers)
x, so that x;x, + 1; 2 =1, 2, 3, is a square. Finally, there always exists
a fifth rational number, x., always a proper fraction, so that x,xs + 13 =
1, 2, 3, 4 is a square.

The question of finding more than four positive integers remains open.

5. Solutions of w;x} + 1 = y!%; 7 = 1,2 with x,y}, e K=k(x,,%,,y,,). The
field X = k(x,,x,,y,,) 1s, of course, the pure transcendental extension k(z,,
Y,,). Sections 4 and 5 show that X contains many solutions zy,y;, of equa-
tion (1) that are not in R = k[x,,2,,y,,] and, therefore, are not given in
Theorem 1.

For example, we may define a quadruple x,,x,,z, = x,(n), x, = x,(n + 1)
which satisfies Theorem 3 and then define

1
(Ou - 1)2
as in (10) to get an infinite sequence of triples x,,x,,rj(n) € K which sat-

isfy (1). The triple x,,x,,xj(n) can be augmented, by Theorem 3, to a quad-
ruple xl,xz,xa(n), xa(n), where xi(n) has the same denominator

lo,(n) - D? = [¢x,x,(Wx,(n + 1) - 1]

as xé(n). By Theorem 5, this quadruple can be augmented to a quintuple

xi(n) = x, = [20, + 40, + 20,0,]

Ty ,%,,x ) (n) ] (1) ] (n).

Once this process is completed we can start anew, beginning with the triples
T,,%,,20(n) or x,,x,,xt(n). Each of the triples can be augmented to quadru-
ples and quintuples, etc. In short, the family of solutions of (1) with x5,
Y135Y,3 € K appears to be very large, and is quite difficult to characterize
completely.
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