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The first and second powers of the golden section ratio, a = (1 + /5)/2, 
can be used to uniquely represent the positive integers in terms of nested 
greatest integer functions, relating the compositions of an integer in terms 
of lTs and 2fs with the numbers generated in WythoffTs game. Earlier, Alladi 
and Hoggatt [1] have shown that there are Fn + 1 compositions of a positive 
integer n in terms of lTs and 2Ts, where Fn is the nth Fibonacci number, gi-
ven by F1 = F2 = 1, Fn + 2

 = Fn + i + &n • Tn e numbers generated in Wythoff * s 
game have been discussed recently in [2, 3, 8] and by Silber [4]. 

Suppose we stack greatest integer functions, using a and a2. 
sent the integers in yet another way: 

to repre-

[a] = [a[a]] = [a[a[a]]] = [a[a[a[a]]]] 

[a2] 

[a[a2]] 

[a[a[a2]]] 

[a2[a2]] 

[a[a[a[a2]]]] 

[a2[a[a2]]] 

[a[a2[a2]]] 

Essentially, we start out with the compositions of an integer in terms of lfs 
and 2Ts. We put in a2 wherever there is a 2, and a wherever there is a one, 
then collapse any strings of afs on the right, since 
we write the compositions of 5 and 6: 

COMPOSITIONS OF 5: 

[a] = 1. For example, 

1 + 1 

1 + 1 

1 + 2 

1 + 1 

2 + 1 

1 + 2 

2 + 1 

2 + 2 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

1 

1 

1 

2 

1 

2 

2 

1 

+ 

+ 

+ 

+ 

+ 

1 + 1 

2 

1 

1 

1 

[a[a[a[a[a]]]]] = [a] = 1 

[a[a[a[a2]]]] = 6 

[a[a2[a[a]]]] = [a[a2]] = 

[a[a[a2[a]]]] = [a[a[a2]] 

[a2[a[a[a]]]] = [a2] = 2 

[a[a2[a2]]] = 8 

[a2[a[a2]]] = 7 

[a2[a2[a]]] = [a2[a2]] = 

306 
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COMPOSITIONS OF 6: 

1 + 1 + 1 + 1 + 1 + 1 
1 + 1 + 1 + 1 + 2 

1 + 1 + 1 + 2 + 1 

1 + 1 + 2 + 1 + 1 

1 + 2 + 1 + 1 + 1 

2 + 1 + 1 + 1 + 1 

1 + 1 + 2 + 2 

1 + 2 + 1 + 2 

2 + 1 + 1 + 2 

1 + 2 + 2 + 1 

2 + 1 + 2 + 1 

2 + 2 + 1 + 1 

2 + 2 + 2 

[a] = 1 

[a[a[a[a[a2]]]]] = 9 

[a[a[a[a2]]]] = 6 

[a[a[a2]]] = 4 

[a[a2]] = 3 

[a2] = 2 

[a[a[a2[a2]]]] = 12 

[a[a2[a[a2]]]] = 11 

[a2[a[a[a2]]]] = 10 

[a[a2[a2]]] = 8 

[a2[a[a2]]] = 7 

[a2[a2]] - 5 

[a2[a2[a2]]] = 13 

Notice that the F6 compositions of 5 gave the representations of the 
tegers 1 through 8, and those of 6, the integers 1 through F7 = 13. We 
to systematize; let us arrange the compositions of 5 and 6 so that the 
resentations using a and a are in natural order. 

COMPOSITIONS OF 5: 
1 + 1 + 1 + 1 + 1 
2 + 1 + 1 + 1 
1 + 2 + 1 + 1 
1 + 1 + 2 + 1 
2 + 2 + 1 
1 + 1 + 1 + 2 
2 + 1 + 2 
1 + 2 + 2 

COMPOSITIONS OF 6: 

1 + 1 + 1 + 1 + 1 + 1 
2 + 1 + 1 + 1 + 1 
1 + 2 + 1 + 1 + 1 
1 + 1 + 2 + 1 + 1 
2 + 2 + 1 + 1 
1 + 1 + 1 + 2 + 1 
2 + 1 + 2 + 1 
1 + 2 + 2 + 1 
1 + 1 + 1 + 1 + 2 
2 + 1 + 1 + 2 
1 + 2 + 1 + 2 
1 + 1 + 2 + 2 
2 + 2 + 2 

REPRESENTATION: 
a] = 1 
a2] = 2 
a[a2]] = 3 
a[a[a2]]] = 4 
a2[a2]] = 5 
a[a[a[a2]]]] = 
a2[a[a2]]] = 7 
a[a2[a2]]] = 8 

REPRESENTATION: 

a] = 1 
a2] = 2 
a[a2]] = 3 
a[a[a2]]] = 4 
a2[a2]] = 5 
a[a[a[a2]]]] = 
a2[a[a2]]] = 7 
a[a2[a2]]] = 8 
a[a[a[a[a2]]]]] 
a2[a[a[a2]]]] = 
a[a2[a[a2]]]] = 
a[a[a2[a2]]]] = 12 
a2[a2[a2]]] = 13 

10 
11 
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Notice that the representations of the first eight integers using the 
compositions of 6 agree with the representations using the compositions of 5. 

ThfLQtKim 1: Any positive integer n can be represented uniquely in terms of 
nested greatest integer functions of a and a2, where the exponents match the 
order of lfs and 2fs in a composition in terms of l?s and 2Ts of an integer 
k9 n <_ Fk + 1 , where any afs appearing to the right of the last appearing a 
are truncated. 

VKOofc Arrange all of the Fk + 1 compositions of k so that when a and a2 are 
inserted in the method described, then the results are in natural order. Do 
the same for the Fk + 2 compositions of (k + 1) in terms of lfs and 2Ts. Notice 
that the representations agree with the first Fk+1 from k. Now, for the com-
positions of k, tack on the right side a2, on the far right of the nested 
greatest integer functions, and suppress all the excess right a's. This 
yields, with the new addition, representation for the numbers 

Fk + l + l> Fk + l + 2> •• • » Fk + l + Fk = Fk+2 ' 
Thus, the process may be continued by mathematical induction. The uniqueness 
also follows as it was part of the inductive hypothesis and carries through. 
Theorem 1 is proved more formally as Theorems 5 and 6 in what follows. 

Next, we write two lemmas. 

Lemma 1: [aFn] = Fn+19 n odd, n > 2; 

[aFn] = Fn + 1 - 1, n even, n >_ 2. 

VK.00JI From Hoggatt [5, p. 34], for 3 = (1 - /5)/2, 

<&n = Fn + 1 - 3"; 

[aFn] = [Fn + 1 - Bn]. 

Since |gn| < 1/2, n >_ 2, if n is odd, then 3" < 0, and [Fn + 1 - gn] = Fn + 1 , 
while if n is even, gn > 0, making [Fn + 1 - 3"] = Fn + 1 - 1. 

Lmma 2: [a2Fn] = Fn + 2, n odd, n >_ 2; 

[a2Fn ] = Fn + 2 - 1, n even, n >_ 2. 

V^ooji S ince aFn = Fn + 1 - 3 " , 

a2Fn = aFn + 1 - a 3 " 

= (Fn + 2 - 3 n + 1) ~ a 3 " 
= Fn+2 - 3 n ( a + 3) 

Then, [a2Fn] = [Fn+2 - 3"] i s c a l c u l a t e d as i n Lemma 1. 

Ldmmci 3 : For a l l i n t e g e r s k _> 2 and n >_ k9 

[akFn] = Fn + k i f n i s odd; 

[akFn] = Fn+k - 1 i f n i s even. 

Vtiooji akF = ak(a" - 3") 
/ 5 

F* + « ~ &"Fk-

3n+k e"+* an+k - 3"+* 
/ 5 / 5 / 5 

ĝ Câ  - B*) 
/ 5 
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Now* |3| Fk < 1 if and only if |g| < l/Fk , which occurs whenever n>_ksk>_29 
since 

Fk ak _ 6k ( - i / 3 ) * - gk ( - D * - e 2 ! c ' 

If & is even, k > 2, 3fc > 0, and 

/5 

1 - B2k 
> 1 

1 /5 

** 1 - B2fc 

Similarly, if k is odd, k >_ 3, Bk < 0, and 

— * — > -1 
-1 - 32k 

f = — ^ — • B* < -B* 
*V -1 - g2* 

Thus, |S| Fk
 < ls and Lemma 2 follows. 

Next, observe the form of Fibonacci numbers written with nested greatest 
integer functions of a and a2: 

F2 = 2 = [a] FG = 8 = [a[a2[a2]]] 

F3 = 2 = [a2] F7 = 13 = [a2[a2[a2]]] 

F, = 3 = [a[a2]] F8 = 21 = [a[a2[a2[a2]]]] 

F5 = 5 = [a2[a2]] F9 = 34 = [a2[a2[a2[a2]]]] 

TkdOKdm 2: F2n+1 = [a2[a2[a2[•••]]]], 

and F2n+2 = [a[a2[a2[a2[ ••• ]]]]], 

both containing n nested a2 factors. 

?HXw£i We have illustrated the theorem for n = 1, 2, ..., 9. Assume that 
Theorem 2 holds for all n <• fc. By Lemma 19 

F2k+2 = [aF2k+1] = [a[a2[a2[a2[ ••• ]]]]] 

for k nested a2 factors; by Lemma 2, 

?2k+3 = [a2^2fe+J = [a2[a2[a2[a2[a2[ ... ]]]]]] 

for (k + 1) nested a2 factors. 
Return once again to the listed compositions of 5 and 6 using lfs and 

2Ts, and let us count the numbers of l!s and 2fs used totally, and the number 
of a's and a2fs appearing in the integers represented. We also add the data 
acquired by listing the compositions of 1, 2, 3, and 4, which appear in the 
tables if the l's on the right are truncated carefully. 
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n 
1 
2 
3 
4 
5 
6 

l's 

1 
2 
5 
10 
20 
38 

2's 

0 
1 
2 
5 
10 
20 

afs 

1 
1 
2 
4 
9 
19 

a2fs 

0 
1 
2 
5 
10 
20 

Suppressed afs 

0 - F3 - 2 
1 = F„ - 2 
3 = F5 - 2 
6 = F6 - 2 
11 = F7 - 2 
19 = Fft - 2 

Define Cn as the nth term in the first Fibonacci convolution [6], [7] 
sequence 1, 2, 5, 10, 20, 38, ..., where 

Cn =Y.FiFn-i 
nLn+1 + 2Fn 

and observe where these numbers appear in our table. Note that Ln is the nth 
Lucas number defined by L± = 1, L2 = 3, and Ln+2 = Ln+i + Ln. 

Tk<LOH,2J(n 2: Write the compositions of n using lfs and 2's, and represent all 
integers less than or equal to Fn + 1 in terms of nested greatest integer func-
tions of a and a as in Theorem 1• Then 

(i) Cn lfs appear; 

(ii) Cn_i 2's appear; 

(iii) Cn_1 a2's appear; 

(iv) Fn+2 ~ 2 afs are truncated; 

(v) (Cn - Fn+2 + 2) aTs appear. 

Vsioofi: Let the table just given form our inductive basis, since (i) through 
(v) hold for n• = 1, 2, 3, 4, 5, 6. Let t(n) and u(n) denote the number of 
times 2 and 1 respectively appear in a count of all such compositions of n. 
Then, by the rules of formation, 

t(n) = t(n - 2) + t{n - 1) + Fn_± 

since we will add a 2 on the right to each composition of in - 2), giving 
tin - 2) 2fs already there, and F1

n_2+1 = Fn_1 new 2fs written, and tin - 1) 
2?s from the compositions of in - 1), each of which will have a 1 added onto 
the right. Since [6] 

Cn = Fn + Cn-l + Cn-2 
has the same recursion relation and tin) has the starting values of the table, 
tin) = Cn-i for positive integers n, establishing (ii). 

Similarly for (i), 

uin) = uin - 1) + Fn + uin - 2) 
since lTs are added on the right to the compositions of in - 1), keeping 
uin - 1) l's already appearing and adding Fn_1+1 = Fn new lfs, and all l's in 
in - 2) will appear, since those compositions have a 2 added on the right. 
We can again establish uin) = Cn by induction. 

Obviously, (ii) and (iii) must have the same count. Since the number of 
afs appearing is the difference of the number of l's used and the number of 
afs truncated, we have (v) immediately if we prove (iv). But the number of 
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n 1 2 
an 1 3 
bn 2 5 

ak+k = bk 

an + bn = abn 

<*an + 1 = *n 
a a n + l ~ a a n = 

ban + l - Kn = 

2 

3 

a n = [na] and 

3 4 
4 6 
7 10 

a n d a-L 
Dn 

and bh Dn 
bn = [na2 

5 
8 

13 

+ i " 

+ i " 

] 

6 
9 

15 

Dn 

K 

1 
11 
18 

= 1 

= 2 

8 
12 
20 

9 
14 
23 

10 
16 
26 

suppressed aTs for k is the number suppressed in the preceding set of compo-
sitions of (k - 1), each of which had a 1 added on the right, plus the number 
of new l's on the right, or, 

Fk + l " 2 + Fk = Fk+2 ~ 2> 

so if the formula holds for 1,2, 3, .. . , fe - 1, then it also holds for k9 
and the number of suppressed afs for n is Fn + 2 - 2 by mathematical induction. 

Now, we go on to the numbers an and bn9 where (an9bn) is a safe-pair in 
Wythoff!s game [2, 4, 8]. We list the first few values for an and bn9 and 
some needed properties: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

We first concentrate on the expressions in (6) for an and bn9 using the 
greatest integer function, and compare to Lemmas 1 and 2. We can write Lem-
ma 4 immediately, by letting n = Fk in (6). 

Lojfnma 4: For all positive integers k9 

aFik = F2k + 1 - l a n d aF2k+l = F2k.+ 2» 

bF2k = F2k+2 - l a n d 6 * 2 k + i = F 2 k + 3 -
Next we show that the integer following Fn is always a member of {an}. 

F̂ LOÔ : Part I: n + 1 is even. Let Fn + 1 = Flk = aF from Lemma 4. Note 
well that F2k_1 £ ibn}9 and by (4) 9

2k 

so that 2""1 + 1 "-1 

a ^ - i + i = a ^ - ! + X = ^ * + ! • 
P a r t I I : n + 1 i s odd. Let 2? - = Fn1^^ = Z?p from Lemma 4 . From 

(3) , we have 2k 1 

since a„ .n - aa = 2 . Thus, 

^k + 1 + 1 = **„_, + 1 = % 2 k., + l = «'„+! 

from F0, = av . This concludes Part II and the theorem. 
ZK ' 2 k - 1 

Th^oKzm Ai aF , , + 1 = bv , , , 
^ n + 2 + 1 ^ n + l + 1 

VH.00^1 P a r t I : n i s even. Let ^w + 2
 = F2k = a F and F2k_± = &F by 

Lemma 4, so that (4) yields 
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From 

makii 

t h i s we 
F2k- : 

ge t 
a«F 

F 2 k -

lg use of ( 3 ) . 

P a r t I I : n 

^2k + l 

i + i 

+ i + l 

i 

bik - 1 

F 2 k - 1 

This conc ludes 

i s odd. 

+ 1 + 1 = 

, L e t FYi 

= aa 
F + 1 

h 1 . 

+ 
+ 1 

P a r t 

1 + 2 = 

+ 1 = 

E2k 

I . 
F2k + 1 ' 

n2k * L 

- 1 + 1 

Using 

» 
Theorem 3 and ( 3 ) , 

which concludes Part II and the proof of the theorem. 

Comm&wU» We have seen that 

Fn + 2 + 1 =
 aFn + 1+i 

from Theorem 3, and 

UFn+l +1 + l = bFn +i 

from Theorem 4. Thus, the sequence of consecutive bj's, 

®Fn +1 » "Fn +2 ' bpn+3 9 . . . , ^F n + 1 » 

and consecutive a7-Ts, 

a F „ + 1 +1 » a F n + 1 +2 ' aFn + i +3 ' ' * * 9 a F „ + 2 » 

cover the sequence 

F 4- 1 F •+• ? F + 1 F 

where, if Fn + 1 = F2fc + i» then bF^_x = F2fc + 1 =
 Fn + 3 > and if Fn + 1 = F2^ , then 

aFn + 2
 = aF2k + i = 2̂fe+2 = Fn + 3- The sequences {#n} and {bn} are such that 

their disjoint union covers the positive integers, and there are Fn_1 of the 
i/s and Fn of the £jfs, or collectively, Fn + 1 all together. The interval 
[Fn + 2 + -1> -̂n + 3] contains precisely i?n + i positive integers. We have shown 
that the union of the two sequences are precisely the integers on this inter-
val. We now are ready to prove Theorem 5 by mathematical induction. 

Tk&QJi&m 5: If a is added onto the right of the specified function for the 
compositions of n properly ordered, then we obtain the integers 

Fn + 2 + 1, Fn + 2 + 2 , ..., Fn + 2 + Fn + 1 = Fn + 3. 
VhJOO^ By our previous discussions, Theorem 5 is true for n - 1, 2, ..., 6. 
Assume it is true for n = k - 1 and n = k. Then, let us add a2 on the left 
to each value of the specified function, making the result be the F, succes-
sive bj f s 

®F, j.1 ' ^F, , + 2 ' • • • ' ^ F » 

and let us add a on the left to each value of the specified function, to ob-
tain the Fk + 1 successive â -'s, 

ap , -j , ap 1 9 ) ...,(2r» • 

These numbers together give the interpretation of compositions of (k+l) 
.3 + 2, ..., pk with a2 on the right, so we. must get Fk + 3 + 1, Fk + 3 + 2, ..., Fk+k* There 

are Fk consecutive bj's and Fk+1 consecutive (Zj's which fit together pre-
cisely to cover the above interval by the discussion preceding Theorem 5, 
giving us a proof by mathematical induction. 
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Tk2.OK.2m 61 The Fn+2 compositions of (n + 1) using lfs and 2fs when put into 
the nested greatest integer function with 1 and 2 the exponents on a can be 
arranged so that the results are the integers 1, 2, . .., Fn + 2 i-n sequence. 

VtlOO^: We have illustrated Theorem 6 for n = 1, 2, . .., 5. Assume that the 
Fn compositions for (n - 1) have been so arranged in the nested greatest in-
teger function representations. By Theorem 5, the results of putting 2 on 
the right of the compositions, or an a2 on the right of each representation, 
yields the numbers Fn + 2 + 1, Fn+2 + 2, ..., JPn+3. The adding of a one to the 
right of compositions of (n + 1) yields a composition of in + 2) but it does 
not change the results of the nested greatest integer representations. Thus 
the list now goes for compositions of (n + 2), the first Fn+2 coming from the 
one added on the right of those for (n + 1) and the Fn+1 more coming from the 
two added on the right of those for n. Thus, by mathematical induction, we 
complete the proof of the theorem for all n _> 1. 

The above proof is constructive, as it yields the proper listing of the 
composition for (n + 2) if we have them for n and for (n + 1). 

Notice the pattern of our representations if we simply record them in a 
different way: 

1 = [a] = a± 

„2 1 2 = [az] = b± 

3 = [a[a2]] = ab 

4 = [a[a[a2]]] = aa^ 

5 = [a2[a2]] = bbl 

6 = [a[a[a[a2]]]] = aa^ 

7 = [a2[a[a2]]] = batl 

8 = [a[a2[a2]]] = a ^ 

In other words, Theorems 3 through 6 and Lemma 4 will allow us to write 
a representation of an integer such that each a in its nested greatest inte-
ger function becomes a subscripted a, and each a2 a subscripted b9 in a con-
tinued subscript form. 

Next, we present a simple scheme for writing the representations of the 
integers in terms of nested greatest integer functions of a and a , as in 
Theorems 1 and 6. We use the difference of the subscripts of Fibonacci num-
bers to obtain the exponents 1 and 2, or the compositions of n in terms of 
l?s and 2!s, by using Fn+1 in the rightmost column. We illustrate for n - 6, 
using F7. Notice that every other column in the table is the subscript dif-
ference of the two adjacent Fibonacci numbers, and compare with the composi-
tions of 6 and the representations of the integers 1, 2, ..., 13 in natural 
order given just before Theorem 1. We use the Fibonacci numbers as place 
holders. One first writes the column of 13 F7fs, which is broken into 8 F6

?s 
and 5 F5

?s. The 8 F6
fs are broken into 5 F5

fs and 3 F^'s, and the 5 F5
fs in-

to 3 Fi/s and 2 F3
fs. The pattern continues in each column, until each F2 is 

broken into F1 and FQ, so ending with F1. In each new column, 1 always re-
places Fn Fn

Ts with Fn_1 Fn_1
1s and Fn_2 Fn_2's. Notice that the next level, 

representing all integers through FQ =21, would be formed by writing 21 F8
fs 

in the right column, and the present array as the top 13 = F7 rows, and the 
array ending in 8 F6

fs now in the top 8 = F6 rows would appear in the bottom 
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eight rows. Notice further that, just as in the proofs of Theorems 1 and 6, 
this scheme puts a 1 on the right of all compositions of (n - 1) and a 2 on 
the right of all compositions of (n - 2). 

SCHEME TO FOKM ARRAY OF COMPOSITIONS OF INTEGERS n < F 7 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Within the array just given, we have used 8 F6's, 5F5's, 6 Fk's, 6F3
fs, 

5 F2
fs, and 8 F^s, where 8 + 5 + 6 + 6 + 5 + 8 = 38 = C6, where again Cn is 

the nth element in the Fibonacci convolution sequence. These coefficients 
appear in the array: 

row sum 

1 
2 
5 
10 
20 
38 

1*V, 2Fn 3F„ 5Fn SFn Cn 

The rows give the number of Fn
?s, Fn_1

}s9 Fn_2
fs, ..., used in the special 

array to write the compositions of n in natural order. Properties of the ar-
ray itself will be considered later. 

Now we turn to the Lucas numbers. We observe 

3 = [a[a2]] 
L3 = 4 = [a[a[az]]] 
L„ - 7 = [a2[a[a2]]] 
L = 11 = [a[a2[a[a2]]]] 

18 [a2[a2[a[a2]]]] 
x 2 [a [a 2 ] 

„2 r„,2 r„,2 r „ , r „ 2 i 
L7 = 29 = [ a [ a z [ ^ [ a [ a 1 ] ] ] ] 

47 = [az [oT [ a b a t o r ] ] ] ] ] 
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Thus, it appears that [aLn] = Ln + 1 if n is odd, and that [a2Ln] = Ln + 2 if n 
is even! Also, we see the form of Lucas numbers, and can compare, them with 
the representation of Fibonacci numbers. We first need a lemma. 

Lmma 5: -1 < 3n/5~ < 1 for n >. 2. 

PfWo£: B2 = (3 - /5)/2, and g2/5 = (3/5" - 5)/2 < .85 < 1. Thus, 

0 < 32"/5 < 32/5 < 1 for n >_ 1. 

I f 0 < B2/5" < 1 , then 0 > g 3 ^ > - 1 , so t h a t 

- 1 < g 2 n + 1 / 5 < 0 fo r n > 1 , 

establishing Lemma 5. 

Ldmmci 6: [aLn] = Ln + 1 for n even, if n > 2; 

[oLn] = Ln + 1 - 1 for n odd, if n >_ 3. 

VhX)0_h} Apply Lemma 5 to the expansion of aLn: 

aLn = a(an + 3M) = an + 1 + 3n + 1 + aBn - Bn + 1 

= ^n + i + 6n(a - B) = Ln + 1 + 3V5. 

Lmma 7** [a2Ln] = £n + 2 if w is even and n >. 2; 

[a2Ln] = £n + 2 - 15 if K is odd and n >_ 1. 
PAxw£_: We apply Lemma 5 to 

a2Ln = a2(a" + Sn) = a"+2 + gn+2 + 6"(a2 - 32) 

= L„+2 + gnA. 
Tk<l0K.2m 1* The Lucas numbers Ln are representable uniquely in terms of nes-
ted greatest integer functions of a and a2 in the forms 

L2n+1 = [a[a2[a2[a2 ... [a[a2]] ... ]]]], 

L2n = [a2[a2[a2... [a[a2]] ... ]]], 

where the number of a2 consecutively is (n - 1), n >. 1. 

P/LOÔ : Theorem 7 has already been illustrated for n = l , 2 , ...,8. A proof 
by mathematical induction follows easily from Lemmas 6 and 7. 

Comparing Theorems 2 and 7, we notice that the representations of Fk and 
Lk + 1 are very similar, with the representation of Lk + 1 duplicating that of Fk 
with [a[a2]] added on the far right. We write 

2 [a2 

Z?n+i= [a[a2[a2 
TkzoKQjn St Fzn + i" tata fa 

2n+ 3" 

2 

2 

F2n+1= [a2[a2[a 

[a2] ...]]] and 

[a2[a[a2]]] ... ]]]; 

, [a2] ...]]] and 

• [a2[a[a2]]] ... ]]], 

where there are n consecutive a2rs. 
Theorem 8, restated, shows that if a 1 and a 2 is added on the right to 

the composition of (k - 1) in terms of l?s and 2fs that gave rise to Fk , one 
obtains Lk+1. If we add a 1 and a 2 on the right of the compositions of n, 
we observe: 
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1: 

2: 

3: 

4: 

1 

_ -_ 

2 

1 

1 

1 

~T~ 
2 

1 

T 
l 

2 

l 

2 

1 

"T" 
2 

~1~ 

1 

2 

"X" 
1 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

[a[a[a2]]] = 4 = ^ + 1 = , 

[a[a[a[a2]]]] = 6 = F5 + 1 

[a2[a[a2]]] = 7 = F5 + 2 

[a[a[a[a[a2]]]]] = 9 = Fe 

[a2[a[a[a2]]]] = 10 = Fs 

[a[a2[a[a2]]]] = 11 = F6 

[a[a[a[a[a[a2]]]]]] = 14 = 

[a2[a[a[a[a2]]]]] = 15 = 

[a[a2[a[a[a2]]]]] = 16 = 

[a[a[a2[a[a2]]]]] = 17 = 

[a2[a2[a[a2]]]] = 18 = 

^3 

= ^ 

+ 1 

+ 2 

+ 3 = L5 

F7 + 1 

F7 + 2 

F7 + 3 

F7 + 4 

F7 + 5 = 

Tk&Qti&m 9: If to the compositions of ft in terms of lTs and 2?s, written in 
the order producing representations of 1, 2, Fn + 1 in terms of nested 
greatest integer functions of a and a in natural order, we add a 1 and a 2 
on the right, then the resulting nested greatest integer functions of a and 
a2 have values 

Fn+3 + 1, Fn+3 + 2, F + F £-

Now, notice that, since the representation giving rise to a Lucas num-
ber in the nested greatest integer representation ends with a 1 and a 2, the 
next representation, taken in natural order, will end in a 2 and a 2. Con-
sider the compositions of ft, where we add two 2Ts on the right: 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

[a[a2[a2]]] = 8 = 

[a[a[a2[a2]]]] = 

[a2[a2[a2]]] = 

[a[a[a[a2[a2]]]]] 

[a2[a[a2[a2]]]] 

[a[a2[a2[a2]]]] 

[a[a[a[a[a2[a2]]] 

[a2[a[a[a2[a2]] 

[a[a2[a[a2[a2]] 

[a[a[a2[a2[a2]] 

[a2[a2[a2[a2] 

Lh + 1 

12 = L, + 1 

13 L5 + 2 

19 = L6 + 1 

20 

21 

L6 + 2 

L6 + 3 = F8 

L7 + 1 30 

31 

32 

33 

34 = L7 + 5 = FQ 

£7 + 2 

L7 + 3 

L7 + 4 

T/ieo/iem 70: If to the compositions of ft in terms of lfs and 2Ts, written in 
the order that produces representations of 1, 2, ..., Fn+1 in natural order 
in terms of nested greatest integer functions of a and a2, we add two 2fs on 
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the right, then the resulting nested greatest integer functions of a and a2 

have the consecutive values 

^n + 3 + Is -̂ rc + 3 + 2, . . . , Ln + 3 + Fn + 1 = Fn+5. 

We are now in a position to count in two different ways all the afs and 
a2 f s appearing in the display of all integers from 1 through Ln simultaneous-
ly. Of the Fn + 1 compositions of n, there are Fn which end in a 1_, and Fn_± 
which end in a 2_. Those ending in a 1_ are the compositions of (n - 1) with 
our _1_ added, while those ending in a 2_ are the compositions of in - 2) with 
our 2_ added. Now, if we add 2_ to each of these Fn + 1 compositions, by Theorem 
5, we get the numbers 

Fn + z +• 1» Fn+1 + 2, ..., Fn + 2 + Fn + 1 = Fn+ 3. 

Of these, there were Fn ending in a _1, which now end in a 1-2 and cover the 
numbers 

and those that end in a 2-2 cover the numbers 

•̂ n + i + 1» £*n + i + 2, ..., Ln + i + Fn + 1 = Fn+3 

when used in the nested greatest integer functions of a and a2 in natural or-
der. We can now count the number of ass and a2fs used to display all the 
representations of the integers from 1 to Ln+1. We count all of those up to 
and including Fn+3 by Theorem 2, and subtract the total a and a2 content of 
the compositions of (n - 2), which is Cn_2 afs and Cn_3 a2?s, and subtract 
2Fn_1 a2's, or, we can count all of those up to and including Fn + 2, and add 
on the Fn a!s and Fn a2ls, and add the number of lfs in the compositions of 
(n - 1), which all become a!s in counting from Fn+2 4- 1 through Fn + 2 + Fn = 
Ln+1. The first method gives us, for the number of a?s, 

(°n + 2 ~ Fn+h + 2 ) " Cn-2-> 
and for the number of a2's, 

^n + 1 ~ ^n + 3 ~ 2Fn _ x . 

The second method gives the number of afs as 

(^n+l " ^n+3 + 2 ) + Cn-2 + Fn > 

which simplifies to 

Cn + 1 + Cn _ x - 2Fn +1 + 2 , 

and the number of a2fs as 

Cn + Cn-2 + Fn> 
finishing a proof of Theorem 11. 

Tho.OH.2m 11«' Write the compositions of (n + 2) using l?s and 2?s, and repre-
sent all integers less than or equal to Ln+i in terms of nested greatest in-
teger functions of a and a2 in natural order as in Theorem 1. Then, 

(i) (C„ + 2 ~ Cn_z - Fn+h + 2) = (Cn + l + C„_x - 2Fn + 1 + 2) 

i s t h e n u m b e r of a ? s a p p e a r i n g , and 

( i i ) (Cn + 1 + Cn.2+ Fn) = (Cn + 1 - Cn_3 - 2^. ,) 

is the number of a2fs appearing. 
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PART III: ADDITIONAL RESULTS 

An examination of the sequence yields corollaries to some of the previ-
ously known results. Being fundamentally Fibonacci minded, and at the onset 
not aware of the works of Stern, Eisenstein, Lehmer and Lind, we noticed the 
following results not already mentioned—some may even seem trivial. 

(1) s(n,l) = n 
s ( n , 2 ) = n - l 
s(n,4) = n - 2 

s(n92m) = n - m 

(2) s(n9a2m) = s(n - m9a) 

(3) Another statement of symmetry is a(n,2n" - a) = s(n92 + a) 

(4) sinX'1) = 1 
s(n,2M-2) = 2 

s(n92n"k) = k 


