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ABSTRACT

Let 4 ={0=a, <a, < ... <a} and B={0=0b, <b, < ... <h, ...}
be sets of k integers and infinitely many integers, respectively. Suppose B
has asymptotic density x : d(B) = x. 1If, for every integer 7 > 0, there is
at most one representation n = a; + b;, then we say that 4, has a packing
complement of density > x.

Given 4; and x, there is no known algorithm for determining whether or
not B exists.

We define "regular packing complement' and give an algorithm for deter-
mining if B exists when packing complement is replaced by regular packing
complement. We exemplify with the case k = 5, i.e., given A5 and x = 1/10,
we give an algorithm for determining if A; has a regular packing complement
B with density > 1/10. We relate this result to the

Conjecture: Every Ag has a packing complement of demsity > 1/10. Let
Ay = {0 =qa; <a, < ... < ay}
and
B={0=0by <hy, < ... <bhb,< ...}

be sets of k integers and infinitely many integers, respectively. If, for
every integer n > 0, n = a; + b; has at most one solution, then we call B a
packing complement, or p-complement, of 4.

Let B(n) denote the counting function of B and define d(B), the density
of B, as follows:

d(B) = 1lim B(n)/n if this 1limit exists.
n+o

From now on we consider only those sets B for which the density exists.

For a given set A;,we wish to find the p-complement B with maximum den-
sity. More precisely, we define p(4,), the packing codensity of 4,, as fol-
lows:

p;) = sup d(B) where B ranges over all p-complements of Ay.

Finally, we define p, as the "smallest" p-codensity of any 4,, or, more pre-
cisely,

P, = inf p(4,).
Ay
We proved [1] that, for € > O,

kl <p i2.66...+8
<2)+1 k k?

if k is sufficiently large.

The first four p,  are trivial, since we can find sets for which the
lower bound is attained. Thus,

4, = {0}, 4, = {0,1}, 4, = {0, 1, 3}, 4, = {0, 1, 4, 6}
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p, =1, p, =1/2, p, = 1/4, p, = 1/7.
But,

1 1

T3P 270

The upper bound is established by 45 = {0, 1, 2, 6, 9} and the lack of cer-
tainty in the lower bound is caused by the impossibility of finding A5 whose
difference set takes on all values 1, 2, ..., 10.

Suppose we have a set 4y, a set B = {by, by, ..., by}, and a number N
such that ¢ + » = m (mod N) has at most one solution,

aed, beB, for 0<m<JW.

Then the packing codensity of 4; is > n/N.

If, in the previous paragraph, the p-complement B consists entirely of
consecutive multiples of M, where (M,N) =1, i.e., B = {M, 2M, ..., nM} (mod
N), then we say that Ay has a regular p-complement of demsity > n/N.

As in [2], there is no known algorithm for determining either the pack-
ing codensity of Ay or even whether A; has a p-complement of density > x.

It is the purpose of this note to give an algorithm for answering the
question: does 4; have a regular p-complement of density > x? We actually
give a method for determining whether 4; has a regular p-complement of den-
sity > 1/10, because of its application to the

Conjecture: pg = 1/10.

However, the generalization of our result is obvious.
We adopt the following conventions throughout:

(1) As represents a set of five integers,
Ag ={0=a, <a, <a; <a, <agl.
(2) M and NV are positive integers, with ¥ < N, (M,N) = 1.
(3) All a; are distinct mod M.
(4) "a; and a; are adjacent mod N'" means that for some M the residues

mod N of a; and a; occur in the ordered N-tuple {M, 2M, ..., NM} (mod N) with
residue mod NV of no other element a; between them. We illustrate with

Ag = {0, 1, 24, 25, 28}, N = 13, M = 5.
The ordered 13-tuple is
{5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 0}

and since

{0, 1, 24, 25, 28} {0, 1, 2, 11, 12} (mod 13),

we can write
As = {0, 1, 2, 11, 12} (mod 13).

In the ordered 13-tuple, A, has the following adjacent pairs:
{o, 11}, {11, 1}, {1, 12}, {12, 2}, {2, O}.

But {11, 12} are not adjacent, because 1 is between them in one sense and 0
and 2 are between them in the opposite sense. Similarly,

{1, 2}, {0, 1}, {2, 11}, and {0, 12}

are nonadjacent pairs.
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(5) "4, has a regular p-complement” will mean that it has a regular p-
complement of density > 1/10.
Lemma 1: Given 4., let a, and a; be adjacent mod ¥ and write
d‘LJM = Cl1 - aj (mod N).

Then A; has a regular p-complement if and only if

N
1o < dijs djs < W,
for all five adjacent pairs Z,J.
Proof: Let C = {M, 24, ..., NM} (mod N) be an ordered N-tuple. Since a,,
«» a5 will occur in C in some order as distinct residues mod N, we assume,
without loss of generality, that 0 < a; <V, ¢ =1, ..., 5. Assume that a;
is to the left of a; in C. (Zero is to the left of the first a; in C.) Write
B={M, 2M, ""liOM} (mod N).

Suppose now that N/10 < d;;, d;; < N. Then a; ® B includes the N/10 elements
of ( immediately to the right of ag;. Thus, while it may include a;, it will
not include any element to the right of a; nor, of course, will it include
aj. Hence, A; @ B cannot include any element of ( more than once. Since C
is a complete residue system mod ¥, B is a p-complement of 4;. Conversely,
if 0 < dij < N/10 or 0 < dj; < N/10, then

(a; ®B) N(a; ®B) # ¢
and B is not a p-complement of B.
Lemma 2: Given Ag, consider the congruence
Y dyjM = a; - a; (mod N).

Then A has a regular p-complement if and only if there exists a solution of
(1), with §/10 < diin 9¥/10, for every pair 7,§, with 1 <2, j <5, 7 # 4.

Proof: 1f A, has a regular p-complement, then Lemma 1 implies that

N .4

0= d

.oy dsy < N if g, and a; are adjacent mod N.
ij gt Z g J

This, in turn, implies that
N oN
To = dej» djz 295

Clearly, the inequalities still hold if a; and g; are not adjacent mod N. If
(1) has the required solution for every pair <,j, this implies that adjacent
a's, mod N, are separated by at least (N/10)M, and so, by Lemma 1, 4; has a
regular p-complement.

Define k, by k¥ = 1 (mod V) and write » = kolN. Let D;; =a; - a;. We
have

Lemma 3: The congruence

(2) dgiM = a; - a; (mod N)

has a solution N/10 < d;; < 9N/10 if and only if r satisfies one of the in-
equalities:
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10D 10D
. il o _ )
Proo4: Suppose 10 S di; < 7o Ve have d;;M = D;; (mod N). However, since

koM = 1 (mod N), we also have
D;; koM = Dy (mod V), so that
d Dijko (mod N).

ij
L

9.
10 =

Therefore, Di;r = & (mod 1) where 1

s <

This implies that

10k = 1) +1 10k = 1) + 9
S T R L7 R s T R
or
10(.k—1)+151,i_1_9&i_ﬂ for some k, 1 < k < |Dy;].
10[D 3| 10[Dy4 |

The argument can also be read backwards, so this completes the proof.
Since each difference D;; determines a set of intervals R;; on the unit
interval: 104
D;;
Pllok -1 +1 10k-1) +9
3 3
k=1 10|D;; | 10D, ]

our result can be expressed in the following

Theorem: Ag does not have a regular p-complement if and only if

(3) N Ry =0

1<i<j<s
Proof: From Lemma 3 we see that every solution, r = k,/N, to the congruence

n 9N
(mod W), 16 i dij S_Ia
must lie in R;;. By Lemma 2 we see that for 4, to have a regular p-comple-
ment it is necessary and sufficient that this congruence have a simultaneous
solution for every pair 1 < %2, J < 5. Hence,

N e+ ¢

1<2<j<5

dLJM = ai - CIJ-

if and only if A_ has a regular p-complement.

The application of this theorem to a given A, is a tedious procedure
without a computer. In [2], we stated that a computer search revealed two
sets Ay, with ay, < 100, that do not have regular (covering) complements of
density < 1/3. We have no such computer information on the packing algorithm
but still think it 1likely that at most a finite number of Ag's do not have
regular p-complements. The obvious attempt to prove this is to assume ag is
large and that (3) is satisfied. So far, we have failed to find the desired
contradiction.
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In a recent correspondence from J. H. E. Cohn, it was learned that Ljung-
gren [1] has proved that the only square Pell numbers are 0, 1, and 169.
(This appears as an unsolved problem, H-146, in [2] and as Conjecture 2.3 in
[3].) Also, if the Fibonacci polynomials {F, ()} are defined by

Folx) =0, Fl(x) =1, and F, ., (x) = 2F,,; (®) + F, (x),

then the Fibonacci numbers are given by F, = F, (1), and the Pell numbers are
P, = F,(2). Cohn [4] has proved that the only perfect squares among the se-
quences {F,(a)}, a odd, are 0 and 1, and whenever a = k?, a itself. Certain
cases are known for a even [5].

The cited results of Cohn and Ljunggren mean that Conjectures 2.3, 3.2,
and 4.2 of [3] are true, and that the earlier results can be strengthened as
follows.

If (n,k) = 1, there are no solutions in positive integers for

F2(a) + F’(a) =K?, n >k > 0, when a is odd and a > 3.

This is the same as stating that no two members of {F,(a)} can occur as the
lengths of legs in a primitive Pythagorean triangle, for g odd and a > 3.
When g = 1, for Fibonacci numbers, if

F! +F: =K*, n>k>0,

then (n,k) = 2, and it is conjectured that there is no solution in positive
integers. When a = 2, for Pell numbers, Ef + Pf = X% has the unique solu-
tion n = 4, k = 3, giving the primitive Pythagorean triple 5—12-13.
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