AN ALGORITHM FOR PACKING COMPLEMENTS OF
FINITE SETS OF INTEGERS

GERALD WEINSTEIN
The City College of New York, New York, NY 10031

ABSTRACT

Let \(A_k = \{0 = a_1 < a_2 < \ldots < a_k \} \) and \(B = \{0 = b_1 < b_2 < \ldots < b_n \ldots \} \) be sets of \(k \) integers and infinitely many integers, respectively. Suppose \(B \) has asymptotic density \(\bar{x} : \bar{d}(B) = \bar{x} \). If, for every integer \(n \geq 0 \), there is at most one representation \(n = a_l + b_j \), then we say that \(A_k \) has a packing complement of density \(\bar{x} \).

Given \(A_k \) and \(\bar{x} \), there is no known algorithm for determining whether or not \(B \) exists.

We define "regular packing complement" and give an algorithm for determining if \(B \) exists when packing complement is replaced by regular packing complement. We exemplify with the case \(k = 5 \), i.e., given \(A_5 \) and \(\bar{x} = 1/10 \), we give an algorithm for determining if \(A_5 \) has a regular packing complement \(B \) with density \(\geq 1/10 \).

We relate this result to the

Conjecture: Every \(A_5 \) has a packing complement of density \(\geq 1/10 \). Let

\[
A_k = \{0 = a_1 < a_2 < \ldots < a_k\}
\]

and

\[
B = \{0 = b_1 < b_2 < \ldots < b_n < \ldots\}
\]

be sets of \(k \) integers and infinitely many integers, respectively. If, for every integer \(n \geq 0 \), \(n = a_l + b_j \) has at most one solution, then we call \(B \) a packing complement, or \(p \)-complement, of \(A_k \).

Let \(B(n) \) denote the counting function of \(B \) and define \(d(B) \), the density of \(B \), as follows:

\[
d(B) = \lim_{n \to \infty} B(n)/n \text{ if this limit exists.}
\]

From now on we consider only those sets \(B \) for which the density exists.

For a given set \(A_k \), we wish to find the \(p \)-complement \(B \) with maximum density. More precisely, we define \(p(A_k) \), the packing codensity of \(A_k \), as follows:

\[
p(A_k) = \sup_B d(B) \text{ where } B \text{ ranges over all } p \text{-complements of } A_k.
\]

Finally, we define \(p_k \) as the "smallest" \(p \)-codensity of any \(A_k \), or, more precisely,

\[
p_k = \inf_{A_k} p(A_k).
\]

We proved [1] that, for \(\varepsilon > 0 \),

\[
\frac{1}{\binom{k}{2} + 1} \leq p_k \leq \frac{2.66\ldots + \varepsilon}{k^2}
\]

if \(k \) is sufficiently large.

The first four \(p_k \) are trivial, since we can find sets for which the lower bound is attained. Thus,

\[
A_1 = \{0\}, A_2 = \{0,1\}, A_3 = \{0,1,3\}, A_4 = \{0,1,4,6\}
\]
AN ALGORITHM FOR PACKING COMPLEMENTS
OF FINITE SETS OF INTEGERS

290

[Dec.

give

\[p_1 = 1, p_2 = 1/2, p_3 = 1/4, p_4 = 1/7. \]

But,

\[\frac{1}{11} \leq p_5 \leq \frac{1}{10}. \]

The upper bound is established by \(A_5 = \{0, 1, 2, 6, 9\} \) and the lack of certainty in the lower bound is caused by the impossibility of finding \(A_5 \) whose difference set takes on all values 1, 2, \ldots, 10.

Suppose we have a set \(A_k \), a set \(B = \{b_1, b_2, \ldots, b_n\} \), and a number \(N \) such that \(\alpha + \beta \equiv m \pmod{N} \) has at most one solution,

\[\alpha \in A_k, \beta \in B, \text{ for } 0 \leq m < N. \]

Then the packing codensity of \(A_k \) is \(\geq n/N \).

If, in the previous paragraph, the \(p \)-complement \(B \) consists entirely of consecutive multiples of \(M \), where \((M,N) = 1 \), i.e., \(B = \{M, 2M, \ldots, nM\} \pmod{N} \), then we say that \(A_k \) has a regular \(p \)-complement of density \(\geq n/N \).

As in [2], there is no known algorithm for determining either the packing codensity of \(A_k \) or even whether \(A_k \) has a \(p \)-complement of density \(\geq \pi \).

It is the purpose of this note to give an algorithm for answering the question: does \(A_k \) have a regular \(p \)-complement of density \(\geq \pi \)? We actually give a method for determining whether \(A_5 \) has a regular \(p \)-complement of density \(\geq 1/10 \), because of its application to the

Conjecture: \(p_5 = 1/10. \)

However, the generalization of our result is obvious.

We adopt the following conventions throughout:

1. \(A_5 \) represents a set of five integers,
 \[A_5 = \{0 = \alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 < \alpha_5\}. \]

2. \(M \) and \(N \) are positive integers, with \(M < N \), \((M,N) = 1 \).

3. All \(\alpha_i \) are distinct \(\pmod{N} \).

4. "\(\alpha_i \) and \(\alpha_j \) are adjacent \(\pmod{N} \)" means that for some \(M \) the residues \(\pmod{N} \) of \(\alpha_i \) and \(\alpha_j \) occur in the ordered \(N \)-tuple \(\{M, 2M, \ldots, nM\} \pmod{N} \) with residue \(\pmod{N} \) of no other element \(\alpha_k \) between them. We illustrate with
 \[A_5 = \{0, 1, 24, 25, 28\}, \quad N = 13, \quad M = 5. \]

The ordered 13-tuple is
\[\{5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 0\} \]

and since
\[\{0, 1, 24, 25, 28\} \equiv \{0, 1, 2, 11, 12\} \pmod{13}, \]

we can write
\[A_5 \equiv \{0, 1, 2, 11, 12\} \pmod{13}. \]

In the ordered 13-tuple, \(A_5 \) has the following adjacent pairs:
\[\{0, 11\}, \{11, 1\}, \{1, 12\}, \{12, 2\}, \{2, 0\}. \]

But \(\{11, 12\} \) are not adjacent, because 1 is between them in one sense and 0 and 2 are between them in the opposite sense. Similarly,
\[\{1, 2\}, \{0, 1\}, \{2, 11\}, \text{ and } \{0, 12\} \]

are nonadjacent pairs.
(5) "A_5 has a regular p-complement" will mean that it has a regular p-
complement of density $\geq 1/10$.

Lemma 1: Given A_5, let a_i and a_j be adjacent mod N and write
\[d_{ij}M \equiv a_i - a_j \pmod{N}. \]
Then A_5 has a regular p-complement if and only if
\[\frac{N}{10} \leq d_{ij}, d_{ji} < N, \]
for all five adjacent pairs i,j.

Proof: Let $C = \{M, 2M, \ldots, 10M\} \pmod{N}$ be an ordered N-tuple. Since $a_1,
\ldots, a_5$ will occur in C in some order as distinct residues mod N, we assume,
without loss of generality, that $0 \leq a_i < N$, $i = 1, \ldots, 5$. Assume that a_j
is to the left of a_i in C. (Zero is to the left of the first a_k in C.) Write
\[B = \left\{ \frac{M}{10}, \frac{2M}{10}, \ldots, \frac{N}{10} \right\} \pmod{N}. \]
Suppose now that $N/10 < d_{ij}, d_{ji} < N$. Then $a_j \oplus B$ includes the $N/10$
elements of C immediately to the right of a_j. Thus, while it may include a_i, it will
not include any element to the right of a_i nor, of course, will it include
a_j. Hence, $A_5 \oplus B$ cannot include any element of C more than once. Since C
is a complete residue system mod N, B is a p-complement of A_5. Conversely,
if $0 < d_{ij} < N/10$ or $0 < d_{ji} < N/10$, then
\[(a_j \oplus B) \cap (a_i \oplus B) \neq \emptyset \]
and B is not a p-complement of B.

Lemma 2: Given A_5, consider the congruence
\[d_{ij}M \equiv a_i - a_j \pmod{N}. \]
Then A_5 has a regular p-complement if and only if there exists a solution of
(1), with $N/10 < d_{ij}, d_{ji} < 9N/10$, for every pair i,j, with $1 \leq i, j \leq 5, i \neq j$.

Proof: If A_5 has a regular p-complement, then Lemma 1 implies that
\[\frac{N}{10} \leq d_{ij}, d_{ji} < N \text{ if } a_i \text{ and } a_j \text{ are adjacent mod } N. \]
This, in turn, implies that
\[\frac{N}{10} \leq d_{ij}, d_{ji} \leq \frac{9N}{10}. \]
Clearly, the inequalities still hold if a_i and a_j are not adjacent mod N. If
(1) has the required solution for every pair i,j, this implies that adjacent
a's, mod N, are separated by at least $(N/10)M$, and so, by Lemma 1, A_5
has a regular p-complement.

Define k_0 by $k_0M \equiv 1 \pmod{N}$ and write $r = k_0/N$. Let $D_{ij} = a_i - a_j$. We have

Lemma 3: The congruence
\[d_{ij}M \equiv a_i - a_j \pmod{N} \]
has a solution $N/10 \leq d_{ij} \leq 9N/10$ if and only if r satisfies one of the in-
equalities:
AN ALGORITHM FOR PACKING COMPLEMENTS OF FINITE SETS OF INTEGERS

\[
\frac{10(k - 1) + 1}{10|D_{\xi \eta}|} \leq r \leq \frac{10(k - 1) + 9}{10|D_{\xi \eta}|}, \quad k = 1, 2, \ldots, |D_{\xi \eta}|.
\]

Proof: Suppose \(\frac{N}{10} \leq d_{\xi \eta} \leq \frac{9N}{10}\). We have \(d_{\xi \eta}M \equiv D_{\xi \eta} \pmod{N}\). However, since \(k_0M \equiv 1 \pmod{N}\), we also have

\[
D_{\xi \eta}k_0M \equiv D_{\xi \eta} \pmod{N},
\]
so that

\[
d_{\xi \eta} \equiv D_{\xi \eta}k_0 \pmod{N}.
\]

Therefore, \(D_{\xi \eta}r \equiv s \pmod{1}\) where \(\frac{1}{10} \leq s \leq \frac{9}{10}\).

This implies that

\[
\frac{10(k - 1) + 1}{10} \leq |D_{\xi \eta}|r \leq \frac{10(k - 1) + 9}{10}
\]
or

\[
\frac{10(k - 1) + 1}{10|D_{\xi \eta}|} \leq r \leq \frac{10(k - 1) + 9}{10|D_{\xi \eta}|}
\]
for some \(k, 1 \leq k \leq |D_{\xi \eta}|\).

The argument can also be read backwards, so this completes the proof.

Since each difference \(D_{\xi \eta} \) determines a set of intervals \(R_{\xi \eta} \) on the unit interval:

\[
R_{\xi \eta} = \bigcup_{k=1}^{[a_{\xi \eta}]} \left[\frac{10(k - 1) + 1}{10|D_{\xi \eta}|}, \frac{10(k - 1) + 9}{10|D_{\xi \eta}|} \right]
\]
our result can be expressed in the following

Theorem: \(A_5\) does not have a regular \(p\)-complement if and only if

\[
\bigcap_{1 \leq i < j \leq 5} R_{\xi \eta} = \phi
\]

Proof: From Lemma 3 we see that every solution, \(r = k_0/N\), to the congruence

\[
d_{\xi \eta}M \equiv a_{\xi} - a_{\eta} \pmod{N}, \quad \frac{N}{10} \leq d_{\xi \eta} \leq \frac{9N}{10}
\]
must lie in \(R_{\xi \eta}\). By Lemma 2 we see that for \(A_5\) to have a regular \(p\)-complement it is necessary and sufficient that this congruence have a simultaneous solution for every pair \(1 \leq i, j \leq 5\). Hence,

\[
\bigcap_{1 \leq i < j \leq 5} R_{\xi \eta} \neq \phi
\]
if and only if \(A_5\) has a regular \(p\)-complement.

The application of this theorem to a given \(A_5\) is a tedious procedure without a computer. In [2], we stated that a computer search revealed two sets \(A_5\), with \(a_5 \leq 100\), that do not have regular (covering) complements of density \(\leq 1/3\). We have no such computer information on the packing algorithm but still think it likely that at most a finite number of \(A_5\)'s do not have regular \(p\)-complements. The obvious attempt to prove this is to assume \(a_5\) is large and that (3) is satisfied. So far, we have failed to find the desired contradiction.
REFERENCES

ADDENDA TO "PYTHAGOREAN TRIPLES CONTAINING FIBONacci NUMBERS": SOLUTIONS FOR $F_n^2 + F_k^2 = K^2$

MARJORIE BICKNELL-JOHNSON

A. C. Wilcox High School, Santa Clara, CA 95051

In a recent correspondence from J. H. E. Cohn, it was learned that Ljunggren [1] has proved that the only square Pell numbers are 0, 1, and 169. (This appears as an unsolved problem, H-146, in [2] and as Conjecture 2.3 in [3].) Also, if the Fibonacci polynomials $\{F_n(x)\}$ are defined by

$$F_0(x) = 0, F_1(x) = 1, \text{ and } F_{n+2}(x) = x F_{n+1}(x) + F_n(x),$$

then the Fibonacci numbers are given by $F_n = F_n(1)$, and the Pell numbers are $P_n = F_n(2)$. Cohn [4] has proved that the only perfect squares among the sequences $\{F_n(a)\}$, a odd, are 0 and 1, and whenever $a = k^2$, a itself. Certain cases are known for a even [5].

The cited results of Cohn and Ljunggren mean that Conjectures 2.3, 3.2, and 4.2 of [3] are true, and that the earlier results can be strengthened as follows.

If $(n,k) = 1$, there are no solutions in positive integers for

$$F_n^2(a) + F_k^2(a) = K^2, \text{ } n > k > 0, \text{ when } a \text{ is odd and } a \geq 3.$$

This is the same as stating that no two members of $\{F_n(a)\}$ can occur as the lengths of legs in a primitive Pythagorean triangle, for a odd and $a \geq 3$.

When $a = 1$, for Fibonacci numbers, if

$$F_n^2 + F_k^2 = K^2, \text{ } n > k > 0,$$

then $(n,k) = 2$, and it is conjectured that there is no solution in positive integers. When $a = 2$, for Pell numbers, $P_n^2 + P_k^2 = K^2$ has the unique solution $n = 4, k = 3$, giving the primitive Pythagorean triple 5-12-13.

REFERENCES
