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6. ZERO-ONE SEQUENCE ONCE MORE 

1. Let f{m9n9 P , S ) denote the number of zero-one sequences of length m+ni 

(1.1) a = (a15 a2, ..., am+n) (a = 0 or 1) 

with m zeros, n ones, v occurrences of (00), and s occurrences of (11). It is 
proved in [1] that 

(1.2) f(m9 n9 r9 s) -

0 

(jn - r = n - s) 

(m - v - n - s : 

(otherwise). 

1) 

The proof in [1] makes use of generating functions; we shall now give a 
combinatorial proof of (1.2). 

Arrange the m zeros and n ones in the following way. We first place mQ 
zeros on the extreme left, then n1 ones, m1 zeros, n2 ones, n2 zeros, . . . , nk 
ones, m-^ zeros, where k is some nonnegative integer, 

+ mv + nk9 

(1.3) 

and 

(1.4) 

where 

w0 >_ 0, m >_ 0, m >_ 1 (1 <_ i < k) 

n± >_ 0 (1 <. i <_ k) 

k 
= ]P(^-l) + 6 + 6'=m-k-l + 

i =0 
k 

= ^2 (nt - 1) = n - k9 

6 = 
1 (m0 = 0) 

(1.5) 
I 0 (rnQ > 0) , 

( 1 (mk = 0) 

\0 (mk> 0)., 

It follows from (1.3) and (1.4) that 

(1.6) r - s = m - n + 6 + & f - l . 

It is now convenient to consider four cases: 

(i) m0 = rnk = 0; (ii) mQ = 0, mk > 0; 

(iii) rn0 > 0, mk = 0; (iv) m0 > 0, mk > 0. 

177 
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The number of solutions of 

a = x± + ••• + xk, xi > 0 (i = 1, ...9 k) 

is equal to (- _ J. 

Thus, the number of solutions 

(mQ9 m19 . . ., mk; n19 .. . , nk) 

of (1.3) is equal to: 

(i) 

(ii) 

(iii) 

(iv) 

( ; : 90s -" ! ) • ( " ; l )("; ') 

(": i)(z : ! ) • ("; ' ) ("; : ) 

( " ; % : ! ) • ( " ; ' ) ( " . " ' ) 

(m - v 1) 

s) 

(m - p = n - s) 

(tf?-P=ft-S + l). 

The first part of (1.2) is implied by (ii) together with (iii), the sec-
ond part by (i) and (iv). The last part of (1.2) is equivalent to the state-
ment that k cannot exist satisfying both parts of (1.4). 

This evidently completes the proof of (1.2). 

2. The above proof is applicable to a much more general problem. Let 

(2.1) r= (P19 r29 P3, . . . ) , s= (s1i s2, s3, ...) 

be two sequences of nonnegat:ive integers. We again consider zero-one sequences 
of length m + n with m zeros and n ones. Let f(r9 s) denote the number of such 
sequences, where T1 = m9 s1 = n, with v^ blocks of zeros of length i, and Si 
blocks of ones of length i for i = 2, 3, 4,... . Thus, v1 can be thought of 
as the number of blocks of zeros of length one and s1 the number of blocks of 
length one. 

As in §1, we envisage an arbitrary sequence o as broken into a block of 
zeros (possibly vacuous) , a block of ones, a block of zeros, and so on. How-
ever, we shall now enumerate the blocks by their cardinality. If k denotes 
the number of blocks of ones, then the number of blocks of zeros is either 
k - l 9 k 9 o r k + l . Hence, we have the following relations, 

r± = k[ + 2k[ + 3fc3' + • • • 

(2.2) 
k[ + Zk[ + 3k^ + 

K + 2K + 3K + 
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and 

(2.3) 

s1 = k± + 2k2 + 3k3 + 

k2 + 2k3 + 3kh + 

s3 = ^3 4- 2£^ + 3k5 + 

together with 

(2.4) 
k[ + k[ + k3f + 

& = /cx + k2 + fc3 + 

where k f = k - l , k , ork+l. 
The fc^ denote the multiplicity of blocks of zeros of length £, and the 

ki denote the multiplicity of blocks of ones of length £. Thus, the first 
of (2.2) enumerates the number of blocks of zeros of length one, that is, the 
total number of zeros. The second of (2.2) enumerates the number of blocks 
of zeros of length two, and so on. Similar remarks apply to (2.3) for the 
blocks of ones. 

It is easily verified that (2.2) is equivalent to the system of equa-
tions 

(2.5) 

while (2.3) is equivalent to 

(2.6) 

K 
V r 

n 

\ kl 

k2 

= 

= 

= 

= 

= 

r i 

r2 

vz 

s i 

s2 

-

-

-

-

-

2v2 + P 3 

2r3 + vh 

2vh + p5 

2s2 + s3 

2s3 + Slf 

k3 - s3 2sh + s5 

Thus, the ri and si must satisfy the following conditions, but are otherwise 
unrestricted. 

(2.7) 
Pi ~ 2 r i + l + *i+2 1 0 

Si - 2si + 1 + si + 2 > 0 
a = i , 2, 3, . . . ) , 

It follows from (2.5), (2.6), and (2.4) that 

(2.8) 
kr = P 1 - P 2 

k = sx - s2 



180 FIBONACCI NOTES [April 

Clearly, 

(2.9) f(rs s) k'l kl 
k[lkf

2lk3V ... k1lk2lksl ... 

In terms of v. and s.s this becomes 

(2.10) f(r, s) = 
(r1 - rz)! 

(P1 - 2P 2 + P 3)!(P 2 - 2P 3 + vh)\ 

(sx - 2s2 + s3)!(s2 - 2s3 + sh)\ 

3. For applications, it is convenient to use generating functions. By the 
multinomial theorem, we have 

(3.1) / , - £i xklxkzxk* 
*1+fc2+k9+----fc k1lk2lk3l . . . i 2 3 

kl (x± + x2 + x3 + • • -)k , 

where it is assumed that the series x± + x2 + x3 + ••• is absolutely conver-
gent. By (2.6)s the left-hand side of (3.1) is equal to 

kl 
(Sl - 2s2 + s3)l(s1 - 2s2 + s3)l ... 

XS1 '282+83x8i-283 + 8k 

kl 

8l~82=k 

( s L - 2s2 + s3)!(s2 - 2 s 3 i o^ 

Hence, i f we t a k e 

x2 = yxy2 

xs = y\y\y* 

^ = y\y\y\yh 

+ Su)! . . . 1 1 2 ^ 1 2 3 ' 

(3.1) becomes 

(3.2) (y± + y\y2 + y\y\y3 + . . . ) f e 

kl y"! ys2ys3 
( s , - 2s2 + s3)l(s2 - 2s3 + s^)l . . f i ^2^3 ( 
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As a first application of (3.2) , we take y3 = y = y = •»• = 1. Then5 
the left-hand side of (4.2) reduces to 

0/x + y\y2 + y\y\ + • • • ) " = yk
xa - y ^ r " 

8 = 0 X ' 

*x-a2-k N 2 ' 
in agreement with (1.2). 

If we take y3 = y4 = ••• = 05 we get 

(y,+ y\yz)k - vlZi^t 
s = 0 

= E (8i;2
8z>»-

Thus, in this case, we have 

0.3) nr,.) - ( r i ; / 2 ) ( 8 i ; 2
8 2 ) . 

where r± - r2 = k \ s1 - s2 = k, while 

P 3 = ^ = ... = os s3 = s4 = .. • = 0. 

That iss (3.3) furnishes the enumerant when all blocks are of length one or 
two. 

4. In (3.2) s we now take 

(4.1) yh = y5 = y6 = ••- = 1. 

Then3 the left-hand side of (3.2) becomes 

(2/x + y\y2
 + y\y\y* + 2/J2/I2/3 + 8-s ) / c 

= ^ij1 + 2/iM1 + 2/1^2^3 + 2/1^2^3 + " * > } 

= z/Mi + 1 
1 ( 1 ™ 2 / ! 2 / 2 2 / 3 

t =0 s = 0 ' 

3 1 ' S 2 5 S 3 X 3 / N 3 / 

bl7V*277«3 
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Hence, we have 

nr. ., - £ : ;;)(-.„; •)(;;: : : x - . ; ' ) . 
where r1 - r2 = kr, s1 - s2 = /c. 

Thus (4.2) furnishes the enumerant by blocks of length 1, 2, and 3. 
If, instead of (4.1), we take 

(4 .3 ) z/4 = y5 = ys = • • • = 0, 

we have 

(y _l_ ^ + 7737V2y ^ = V ^ J yt1+2tz+t3yt2 + 2t3yt3 

t 1 + t 2+t3=fe 1 # 2 # 3 * 

_ V ^ _ Si S2 S3 

Li (S - 2s2 + s 3 ) ! ( s 2 - 2s3)ls3\
y± y*y* 

s1 - s2 = k 

so that 
( P X - r 2 ) ! 

(4.4) / ( f , • ) 
( P X - 2r 2 + P 3 ) ! ( P 2 - 2 P 3 ) ! P 3 ! 

(si ~ s 2 > ! 

(S]L - 2s 2 + s 3 ) ! ( s 2 - 2 s 3 ) ! s 3 ! ' 

the enumerant when all blocks are of length 1, 2, or 3. 

5. The general cases corresponding to (4.2) and (4.4) are now readily ob-
tained. Let p be a fixed positive integer, and take 

(5.1) y = y = ... = 1. 

Then we have 

( yp'1yp'2 ... y ^ 
(5.2) <y1+y2y + - • • + yp'2yp'3 • • • y +-7 — 
K |^l #1^2 ^1 ^2 ^p-2 1 - Z/^2 ... 2/ 

2 ( t i s t2> •••> V i ^ * 1 ^ *1 ,, *2 

2 

Q = n \ ' 

where 

(tx + t2 • + .-• + tp_i)! 
(t 1 , t 2 5 ... j £p - 1) tiltz! ... tp.i! 

and 
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K = t± + 2 t 2 + . . . + (p - 1)* 

ti. = ^2 + 2 t 3 + . . . + (p - 2)t? 

p • 

P-2 

P-2 

V - i 

t + 2± 
P - 2 P - 1 

" p - l " 

Put 

I t fo l lows t h a t 

£/ + s = si (1 <_ i < p ) 9 s = sp 

(5.3) 

^P - I s p - 1 

^p - 2 ^P - 2 

% - 3 ~ S p - 3 

p ~ 1 ~*~ SP 

2Sp-2 + S P - 1 

* 1 " S l " 2 S 2 + S 3 -

Hence, t h e c o e f f i c i e n t of ySlySl . . . i/Sp i n (5 .2 ) i s equa l t o 

(5-A) {tx, t 2 , . . . , V i > ( 8 p _ 8 " * ) • 

where tl9 t 2 , ..., tp_x are given by (5.3), 
The enumerant f(r9 s) is therefore equal to (5.4) times the co 

ing factor containing the vi . 
Corresponding to 

(5 .5 ) 

we have 

(5 .6 ) 

where now 

y i = y p - 2 o, 

(y± + y\y2 + ••• + y{y p „ p - i 
2 yPy 

J^ ( t l 9 tz, . . . , tp)y3
1
1ys

2 1P > 

t x + 2t2 + 3t3 + + p t , 

t + It + 3* + . . . + (p - 1)*F 

V i + 2 t P p - i 

= Sv 
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This gives 

(5.7) 

tp - Sp 

tv-\ SP-I 

tp-2 ~ Sp-2 

V s " Sp-3 

2s„ 

l s
v - i + Sp 

2Sp-2 + Sp-1 

t1 - f l l 2s2 + s3. 

Hence9 the coefficient of y^y^2 ... ypp is the multinomial coefficient 
(t±9 t 2 , . .., £p) , with the ti determined by (5.7). The enumerant f(r9 s) is 
the product of this coefficient times the corresponding factor containing the 

6. Some curious combinatorial identities are implied by the above results. 
To illustrate with a simple case, we return to §3. It follows from (3.1) 
that, for s1 > s2, we have 

(6.1) 

where 

t, 

£<*!. v v •.•> = (Si
s;1)' 

s i - 2si+i + s i + 2 & = L 2> 3> • • •> , 

and the summation is over all s3, s^, s5, ... . 
Similarly, from the proof of (4.2), we have, for 

(6.2) 

where 

E < V , . «..->-(:; ::;)(•».;'). 
£,' = Sv 2si+1 + si+2 (i = 1, 2, 3, . . . ) , 

and the summation is over all s4, s5, s6, ... . 
The general case implied by (5.2) and (5.4) is readily stated. We have 

(6.3) £ ( * i . tz, t3, . . . ) = (t l S t 2 , . . . , V i ^ ' V *), 
where 

ti = s^ - 2 s i + 1 + s i + 2 ( i = 1, 2, 3, . . . ) 

î = ~^i \ i = 1, . . . , p - 2 ) , t p _ 1 = Sp _ 1 - Sp, 

and the summation on the left of (6.3) is over all s x, s 2» sp+39 •"• * 
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There are various other possibilities; for example, taking y = 1 in 
(3.2)„ However, we leave this for another occasion. 
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