ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by

A. P. HILLMAN

University of New Mexico, Albuquerque, New Mexico 87131
Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A.P. HILLMAN, 709 Solano Dr., S.E., Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within 4 months of the publication date.

DEFINITIONS

The Fibonacci numbers F_{n} and Lucas numbers L_{n} satisfy $F_{n+2}=F_{n+1}+F_{n}$, $F_{0}=0, F_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$. Also a and b designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

PROBLEMS PROPOSED IN THIS ISSUE
B-424 Proposed by Richard M. Grassl, University of New Mexico
Of the $\binom{52}{5}$ possible 5 -card poker hands, how many form a :
(i) full house?
(ii) flush?
(iii) straight?

B-425 Proposed by Richard M. Grassl, University of New Mexico
Let k and n be positive integers with $k<n$ and let S consist of all $k-$ tuples $X=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ with each x_{j} an integer and

$$
1 \leq x_{1}<x_{2}<\cdots<x_{k} \leq n
$$

For $j=1,2, \ldots, k$, find the average value \bar{x}_{j} of x_{j} over all X in S.
B-426 Proposed by Herta T. Freitag, Roanoke, VA
Is $\left(F_{n} F_{n+3}\right)^{2}+\left(2 F_{n+1} F_{n+2}\right)^{2}$ a perfect square for all positive integers n, i.e., are there integers c_{n} such that $\left(F_{n} F_{n+3}, 2 F_{n+1} F_{n+2}, c_{n}\right)$ is always a Pythagorean triple?

B-427 Proposed by Phil Mana, Albuquerque, $N M$
Establish a closed form for $\sum_{k=1}^{n} k\binom{k}{2}\binom{n-k}{3}$.
B-428 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
For odd positive integers w, establish a closed form for

$$
\sum_{k=0}^{2 s+1}\binom{2 s+1}{k} F_{n+k w}^{2}
$$

B-429 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Is the function

$$
F_{n+10 r}^{4}+F_{n}^{4}-\left(L_{8 r}+L_{4 r}-1\right)\left(F_{n+8 r}^{4}+F_{n+2 r}^{4}\right)+\left(L_{12 r}-L_{8 r}+2\right)\left(F_{n+6 r}^{4}+F_{n+4 r}^{4}\right)
$$

independent of n ? Here n and r are integers.
SOLUTIONS
Multiples of Some Triangular Numbers
B-400 Proposed by Herta T. Freitag, Roanoke, VA
Let T_{n} be the nth triangular number $n(n+1) / 2$. For which positive integers n is $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+\cdots+T_{n}^{2}$ an integral multiple of T_{n} ?

Solution by C. C. Thompson, Roanoke, VA
Let $S=\sum_{k=1}^{n} T_{n}^{2}$, where n is a positive integer; then S is an integral multiple of T_{n} iff $n \doteq 1,7,13(\bmod 15)$. To see this, use the formulas for sums of powers of the first n positive integers (or the method of differences) and a bit of manipulative algebra to get

$$
S=T_{n} \cdot\left(3 n^{3}+12 n^{2}+13 n+2\right) / 30
$$

From this, the sum S is an integral multiple of T_{n} iff

$$
f(n)=3 n^{3}+12 n^{2}+13 n+2 \equiv 0(\bmod 2 \cdot 3 \cdot 5)
$$

Now $f(n) \equiv n^{3}+n \equiv n(n+1)^{2} \equiv 0(\bmod 2)$ is satisfied by any positive integer; $f(n) \equiv n+2 \equiv 0(\bmod 3)$ has $n \equiv 1(\bmod 3)$ as its only solution; $f(n) \equiv$ $(3 n+2)\left(n^{2}+1\right) \equiv 0(\bmod 5)$ has $n \equiv 1,2,3(\bmod 5)$ as solutions. From this, $f(n) \equiv 0(\bmod 30)$ has the solutions $n \equiv 1,7,13(\bmod 15)$.
Also solved by Paul S. Bruckman, Edilio A. Escalona Fernández, Bob Prielipp, Sahib Singh, M. Wachtel (Switzerland), Jonathan Weitsman, Gregory Wulczyn, and the proposer.

```
Change of Pace for F.Q.
```

B-401 Proposed by Gary L. Mullen, Pennsylvania State University
Show that $\lim _{n \rightarrow \infty}\left[(n!)^{2 n} /\left(n^{2}\right)!\right]=0$.
Solution by Edilio A. Escalona Fernández, Caracas, Venezuela
Let's call $R_{n}=(n!)^{2 n} /\left(n^{2}\right)!$, and $T_{n}=\operatorname{Ln}\left(R_{n}\right)$. Then,

$$
T_{n}=2 n \operatorname{Ln}(n!)-\operatorname{Ln}\left(\left(n^{2}\right)!\right)
$$

so that by applying the formula $\operatorname{Ln}(n!)=n \operatorname{Ln}(n)-n+0(\operatorname{Ln}(n))$, we have

$$
T_{n}=-n^{2}+2 n 0(\operatorname{Ln}(n))+0(\operatorname{Ln}(n))=-n^{2}+0(n \operatorname{Ln}(n))
$$

and this means that $T_{n} \rightarrow-\infty$ as $n \rightarrow \infty$; hence, by continuity of $\exp (x)$:

$$
\exp \left(T_{n}\right)=R_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Also solved by Paul S. Bruckman, M. Wachtel (Switzerland), Jonathan Weitsman, Gregory Wulczyn, and the proposer.

```
    Pythagorean Triple
B-402 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
    Show that ( }\mp@subsup{L}{n}{}\mp@subsup{L}{n+3}{\prime},2\mp@subsup{L}{n+1}{}\mp@subsup{L}{n+2}{\prime},5\mp@subsup{F}{2n+3}{}) is a Pythagorean triple.
Solution by Sahib Singh, Clarion College, Clarion, PA
Let \(A=L_{n+2}, B=L_{n+1}\), then
\[
\begin{aligned}
& A^{2}-B^{2}=\left(L_{n+2}-L_{n+1}\right)\left(L_{n+2}+L_{n+1}\right)=L_{n} L_{n+3} . \\
& A^{2}+B^{2}=L_{n+2}^{2}+L_{n+1}^{2}=5\left(F_{n+2}^{2}+F_{n+1}^{2}\right)=5 F_{2 n+3} .
\end{aligned}
\]
```

Thus, the given triple is $A^{2}-B^{2}, 2 A B, A^{2}+B^{2}$, which is Pythagorean.
Also solved by PaulS. Bruckman, Herta T. Freitag, Graham Lord, John W. Milsom, Bob Prielipp, and the proposer.

Lucas Congruence

B-403 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA
Let $m=5^{n}$. Show that $L_{2 m} \equiv-2\left(\bmod 5 m^{2}\right)$.
Solution by Graham Lord, Université Laval, Québec;
Bob Prielipp, University of Wisconsin-Oshkosh; and
Sahib Singh, Clarion College, Clarion, Pa (independently)
It is known that $m \mid F_{m}$. [See B-248, vol. 11 (1973):553.] Hence,

$$
\left(5 m^{2}\right) \mid\left(5 F_{m}^{2}\right)
$$

Since m is odd, we also have $L_{2 m}=5 F_{m}^{2}-2$, and it follows that

$$
L_{2 m} \equiv-2\left(\bmod 5 m^{2}\right) .
$$

Also solved by Paul S. Bruckman, Lawrence Somer, and the proposer.

Golden Approximations

B-404 Proposed by Phil Mana, Albuquerque, NM
Let x be a positive irrational number. Let a, b, c, and d be positive integers with $a / b<x<c / d$. If $a / b<r<x$, with r rational, implies that the denominator of r exceeds b, we call α / b a good lower approximation (GLA) for x. If $x<r<c / d$, with r rational, implies that the denominator of r exceeds $d, c / d$ is a good upper approximation (GUA) for x. Find all the GLAs and all the GUAs for $(1+\sqrt{5}) / 2$.
Solution by Paul S. Bruckman, Concord, CA
Let

$$
\begin{equation*}
x_{n}=F_{2 n} / F_{2 n-1}, y_{n}=F_{2 n+1} / F_{2 n}, n=1,2,3, \ldots ; \tag{1}
\end{equation*}
$$

1et

$$
\begin{equation*}
X=\left(x_{n}\right)_{n=1}^{\infty}, Y=\left(y_{n}\right)_{n=1}^{\infty} . \tag{2}
\end{equation*}
$$

It is well known that X and Y provide the convergents for the continued fraction of α, and moreover:

$$
\begin{equation*}
1=x_{1}<x_{2}<\cdots<x_{n}<\cdots a<y_{n}<\cdots<y_{2}<y_{1}=2 . \tag{3}
\end{equation*}
$$

Let L and U denote the set of GLAs and GUAs，respectively，for α ．We will prove that

$$
\begin{equation*}
L=X, U=Y \tag{4}
\end{equation*}
$$

We will use the following result，readily proved by applying the Binét defi－ nitions：

$$
\begin{equation*}
F_{2 n+2} F_{2 n-1}-F_{2 n} F_{2 n+1}=1 \tag{5}
\end{equation*}
$$

Proof of（4）：Given any positive integer n ，and any rational $r=u / v$ ，such that $x_{n}<r \leq x_{n+1}$ ，then，$x_{n+1}-x_{n} \geq r-x_{n}>0$ ，i．e．，

$$
\begin{aligned}
\frac{F_{2 n+2}}{F_{2 n+1}}-\frac{F_{2 n}}{F_{2 n-1}} & \geq \frac{u}{v}-\frac{F_{2 n}}{F_{2 n-1}}>0 \\
\Rightarrow v\left(F_{2 n+2} F_{2 n-1}-F_{2 n} F_{2 n+1}\right) & \geq F_{2 n+1}\left(u F_{2 n-1}-v F_{2 n}\right)>0
\end{aligned}
$$

But，since $u / v>F_{2 n} / F_{2 n-1}$ ，thus $u F_{2 n-1}-v F_{2 n} \geq 1$ ；using（5），this implies

$$
\begin{equation*}
v \geq F_{2 n+1^{\circ}} \tag{6}
\end{equation*}
$$

Since $F_{2 n-1}<F_{2 n+1}$ ，thus $v>F_{2 n-1}$ ，which implies that $x_{n} \varepsilon L$ ．Hence，
$X \subseteq L$.
Conversely，suppose $r=u / v \in L$ ．Then，for some $n, x_{n}<r \leq x_{n+1}$ ，which again implies（6），as above．Assume that $r<x_{n+1}$ ．Then，by definition of L ， $v<F_{2 n+1}$ ，which contradicts（6）．It follows that $r=x_{n+1} \Rightarrow r \varepsilon X$ ．Hence， $L \subseteq X$.
Combining（7）and（8）implies $L=X$ ．Proceeding in a totally analogous manner，we may likewise prove that $U=Y$ ．

Also solved by Sahib Singh，Gregory Wulczyn，and the proposer．

Good Rational Approximations

B－405 Proposed by Phil Mana，Albuquerque，NM
Prove that for every positive irrational x ，the GLAs and GUAs for x（as defined in $B-404$ ）can be put together to form one sequence $\left\{p_{n} / q_{n}\right\}$ with

$$
p_{n+1} q_{n}-p_{n} q_{n+1}= \pm 1 \text { for all } n
$$

Solution by the proposer．
Let $p=[x]$ ，the greatest integer in x ．Clearly p is a GLA and $p+1$ is a GUA．So we let $p_{1}=p, q_{1}=1=q_{2}$ ，and $p_{2}=p+1$ ．Then we assume induc－ tively that p_{n} and q_{n} have been defined for $n=1,2, \ldots, k$ ．Let s be the largest such n for which p_{n} / q_{n} is a GLA and t be the largest such n for which p_{n} / q_{n} is a GUA；then define $p_{n+1}=p_{s}+p_{t}$ and $q_{n+1}=q_{s}+q_{t}$ ．This defines p_{n} and q_{n} for all positive integers n and we let $r=p_{n} / q_{n}$ ．It follows from the theory of Farey sequences［see Ivan Niven \＆Herbert S．Zuckerman，An In－ troduction to the Theory of Numbers（New York：Wiley，1960），pp．128－133） that the r_{n} give us all the GLAs and GUAs and that $p_{n+1} q_{n}-p_{n} q_{n+1}= \pm 1$ ．
Also solved by Paul S．Bruckman and Sahib Singh．

