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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy Fn + 2 = Fn + 1 + Fn , 
FQ = 0, F-L = 1 and Ln + 2 = Ln + 1 + Ln, L0 = 2, L1 = 1. Also a and b designate 
the roots (1 + /5~) /2 and (1 - /5)/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-424 Proposed by Richard M. Grassl, University of New Mexico 

/52\ 
Of the I J possible 5-card poker hands, how many form a: 

(i) full house? 
(ii) flush? 
(iii) straight? 

B-425 Proposed by Richard M. Grassl, University of New Mexico 

Let k and n be positive integers with k < n and let S consist of all k-
tuples X = (x-, , ) with each Xj an integer and 

I <_ x± < x2 < • • - < xk ^ n. 

For j = 1, 2, ...9k9 find the average value Xj of X\j over all X in S* 

B-426 Proposed by Herta T. Freitag, Roanoke, VA 

Is (FnFn+3)2 + (2Fn+1Fn+2)2 a perfect square for all positive integers n9 
i.e., are there integers cn such that (FnFn + 39 2Fn+1Fn+2 , cn) is always a 
Pythagorean triple? 

B-427 Proposed by Phil Mana, Albuquerque, NM 

Establish a closed form fc -|>C)(V)-
B-428 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

For odd positive integers w9 establish a closed form for 
2 s + l 

£ 
fc = 0 

P1 f2S + l) F2 
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B-429 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 
Is the function 

K + ̂ r + Fn ~ (Lir + L,p - 1) (F* + Br + Fl + 2r) + (L12r - LBr + 2) (^ + G + F^,) 

independent of nl Here n and v are integers. 

SOLUTIONS 

Multiples of Some Triangular Numbers 

B-400 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn be the nth triangular number n(n + l)/2. For which positive in-
tegers n is T2 + T2 + T2 + .. - + T2 an integral multiple of Tnl 

Solution by C. C. Thompson, Roanoke, VA 
n 

Let S = 2^ ^ s where n is a positive integer; then S is an integral mul-
fc-i 

tiple of Tn iff n = 1, 75 13 (mod 15). To see this., use the formulas for sums 
of powers of the first n positive integers (or the method of differences) and 
a bit of manipulative algebra to get 

S = Tn • (3n3+ 12n2 + 13rc + 2)/30. 

From this, the sum S is an integral multiple of Tn iff 

f(n) = 3n3 + I2n2 + 13n + 2 = 0 (mod 2 • 3 • 5). 

Now f(n) E n 3 + n = n ( n + l ) 2 = 0 (mod 2) is satisfied by any positive inte-
ger; f{ri) = n + 2 E 0 (mod 3) has n E 1 (mod 3) as its only solution; f(n) E 
(3n + 2)(n2 + 1) E 0 (mod 5) has n E 1, 29 3 (mod 5) as solutions. From this, 
/(n) E 0 (mod 30) has the solutions n E 157, 13 (mod 15). 

Also solved Jby Paul 5". Bruckman, Edilio A. Escalona Fernandez, Bob Prielipp, 
Sahib Singh, M. Wachtel (Switzerland) , Jonathan Weitsman, Gregory Wulczyn, and 
the proposer. 

Change of Pace for F.Q. 

B-401 Proposed by Gary L. Mullen, Pennsylvania State University 

Show that lim[(n!)2n/(n2)!] = 0 . 

Solution by Edilio A. Escalona Fernandez, Caracas, Venezuela 

Let!s call Rn = (n!)
2n/(n2)!, and Tn = Ln(Rn). Then9 

Tn = 2nLn(nl) - Ln((n2)l), 

so that by applying the formula Ln(n!) = nLn(ri) - n + 0(Ln(n))5 we have 

yw = _n2 + 2n0(Ln(n)) + 0(Ln(w)) = -n2 + 0(nLn(n))5 

and this means that Tn -> -oo as n -> °o; hence, by continuity of expOs): 

exp(Tn) = i?„ -> 0 as n + °°. 

Also solved by Paul S. Bruckman, M. Wachtel (Switzerland), Jonathan Weitsman, 
Gregory Wulczyn, and the proposer. 
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Pythagorean Triple 

B-402 Proposed by Gregory Wulczyn, Bucknell University,.Lewisburg, PA 

Show that (LnLn+39 2Ln+1Ln+2s 5F2n+3) is a Pythagorean triple. 

Solution by Sahib Singh, Clarion College, Clarion, PA 

Let A = Ln+2s B = Ln+l3 then 

A - B = (£ n + 2 "~ ^n + l) (Bn + 2 + £n + i) = ^n^n + 3® 

A + 5 = Ln + 2 + Ln + 1 = 5(F n + 2 + Fn + 1 ) = 5 F 2 n + 3. 

Thus, the given triple is A2 ~ B2, 2AB, ̂ 42 + £2, which is Pythagorean. 

Also solved by Paul S. Bruckman, HertaT. FreitagF Graham Lord, John Wo Milsom, 
Bob Prielipp, and the proposer. 

Lucas Congruence 

B-403 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA 

Let m = 5 n . Show that L 2 m E -2 (mod 5 m 2 ) . 

Solution by Graham Lord, Universite Laval, Quebec-
Bob Prielipp, University of Wisconsin-Oshkosh; and 
Sahib Singh, Clarion College, Clarion, Pa (independently) 

It is known that m\Fm . [See B-2489 vol. 11 (1973):553.] Hence, 

(5m2)|(5F2). 

Since m is odd, we also have L2m = 5F% - 2, and it follows that 

L2m = -2 (mod 5m2). 

Also solved by Paul S. Bruckman, Lawrence Somer, and the proposer. 

Golden Approximations 

B-kQk Proposed by Phil Mana, Albuquerque, NM 

Let x be a positive irrational number. Let a, b9 o5 and d be positive 
integers with alb < x < old. If alb < v < x9 with r rational, implies that 
the denominator of v exceeds b5 we call a lb a good lower approximation (GLA) 
for x. If x < r < olds with r rational. Implies that the denominator of r 
exceeds ds old is a good upper approximation (GUA) for x. Find all the GLAs 
and all the GUAs for (1 + /5)/2. 

Solution by Paul S. Bruckman, Concord, CA 

Let 

(1) xn = F2n/F2n_l9 yn = F2n + 1/F2nS n = 1, 2 , 3 , . . . ; 

l e t 

(2) X = (tfn)n-l» Y = Q/»)n-l-

It is well known that X and Y provide the convergents for the continued frac-
tion of a, and moreover? 
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(3) 1 = x± < x2 < • •• < xn < -•- a -•• < z/n < • .. < z/2 < 2/x = 2. 

Let L and [/ denote the set of GLAs and GUAs, respectively, for a* We will 
prove that 

(4) L = X, U = I. 

We will use the following result, readily proved by applying the Binet defi-
nitions: 

VK.00^ 0^ (4) : Given any positive integer n, and any rational r = u/v 9 such 
that # n < r <L xn+l5 then, # M + 1 - ̂ n _> r - xn > 0, i.e. , 

F F F 
2n + 2 2n u 2n 

— — _ _ — > __ _ > o 
F F — v F 
L 2n + l L 2n- 1 u L 2n- 1 

=> v (F F - F F ) > F (uF - vF ) > 0. 
u y 2n + 2r2n~l r2nr2n + lJ — r 2n+ 1 K 2n - 1 un2nJ U * 

B u t , s i n c e u/v > ^ln/F2n_13
 t^iUS u^2n-i ~ vFm — ^> u s i n g ( 5 ) , t h i s i m p l i e s 

S i n c e ^ 7
2 n _ 1 < ^ 2 n + l 5 t h u s i? > F2n_1* w ^ c n i m p l i e s t h a t xn £. L» H e n c e , 

(7) I Q , 
Conversely, suppose r = u/veL. Then, for some n, xn < r <_ xn + l3 which 

again implies (6), as above. Assume that r < xn+1« Then, by definition of L, 
V < F 2 n + 1 , which contradicts (6). It follows that r = oon+1 => r e X. Hence, 

,(8) L C I , 

Combining (7) and (8) implies L = X. Proceeding in a totally analogous 
manner, we may likewise prove that U = Y« 

Also solved by Sahib Singh, Gregory Wulczyn, and the proposer. 

Good Rational Approximations 

B-I4O5 Proposed by Phil Mana, Albuquerque, NM 

Prove that for every positive irrational x5 the GLAs and GUAs for x (as 
defined in B-404) can be put together to form one sequence {pn/q } with 

v ,a - p q , = ±1 for all n « 

Solution by the proposer. 

Let p = [x], the greatest integer in x« Clearly p is a GLA and p + 1 is 
a GUAo So we let p ± = p, q± = 1 = q2 , and p 2 = p + 1. Then we assume induc-
tively that p n and qn have been defined for n = 1, 2, *os, k. Let s be the 
largest such n for which pn/qn is a GLA and t be the largest such n for which 
pn lqn is a GUA; then define p n + 1 = p s + p t and q n + 1 = qs + qt « This defines 
pn and q n for all positive integers n and we let r =pn/qn. It follows from 
the theory of Farey sequences [see Ivan Niven & Herbert S„ Zuckerman, An In-
troduction to the Theory of Numbers (New York: Wiley, I960), pp. 128-133) 
that the p„ give us all the GLAs and GUAs and that p q - v Q = ±1. 

Also solved by Paul 5. Bruckman and Sahib Singh. 


