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(3°) The Blissard generating function yr of column r is given by use of (2): 

I r ) Um-rm\ r ? LjUm~v (m _ p \ , » 
m \ / m \ • / 

so t h a t 
2/r = e _ a r ( l - a?)"2*2*/*'!. 

+ 00 

(4°) The sum ] T z/r i s ( l - x ) ~ 2 = 1 + 2x + 3x2 + • • • , which confi rms t h a t t h e 
r = 0 

coefficient of xm/ml is (m + 1)!. 

(5°) According to (3), the ratio um/(m +1)1 is equal to 

1 " \l)m + 1 + \ 2 / (m + l)m " *** + ^ ^ \P) (m + 1)* + ° e°  

As 777 increases, with fixed p, the general term of this sum tends toward 
(-1)P/2,I; it follows that the sum itself tends toward e~l , which is the 
limiting proportion of irregular permutations. 

(6°) Using (2), it appears that 

u(m$ r) =
 um-r ^ m - r + I 

(m + 1)! " (m - r + 1)! rl(m + 1) " 

As' m increasess the second member tends toward e~1/rl* The latter re-
sult means that9 if a permutation is chosen at random in Sm+1 and if m 
increases, the limiting probability distribution of its regularity is 
a Poisson distribution with mean 1. 
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In recent years, there has been some flurry of excitement over the re-
lationship between the complexity of a graph, i.e., the number of distinct 
spanning trees in a graph, and the Fibonacci and Lucas numbers [1, 2]. In 
this note, I shall demonstrate a relationships, although incomplete, between 
the Fibonacci numbers and the star polygons. My hope is to spur further 
research into the connection between nonplanar graphs and their enumeration 
from number theory. 



230 STAR POLYGONS, PASCAL'S TRIANGLE, AND FIBONACCI NUMBERS [Oct. 

The star n-polygon i ,j, one of the simplest of these nonplanar graphs, 

is constructed by placing n points equidistantly on the perimeter of a cir-
cle and then connecting every <ith point such that 

njd is relatively prime and n 4 n - d £ 1. 

The last condition effectively removes the class of all regular polygons. 
The group structure of such polygons is clear; it is related to the par-

tition of unity in which this partition is prime. Therefore, it does not 

come as any surprise that a symmetry relation for the star n-polygon < , V is 

This fact was brought to my attention by Ms Dianne Olvera. 
It then intrigued me to discern whether the symbolic symmetry exhibited 

by (1) could be generated by a somewhat similar number-theoretic symmetry, 
that produced by Pascal1s triangle; row-wise, the combinatorial symmetry 

U)-(y^) 
exists. 

At first glance, the similarity between (1) and (2) appears to be only 
cosmetic, since there are absolutely no restrictions on the values of the 
positive integers y and 3 as long as y >• $• Secondly, there seems to be no 
numerical congruence between (1) and (2). 

On the other hand, if one were to examine the Fibonacci numbers Fn gen-
erated by summing entries along the diagonals of Pascal's triangle, an algo-
rithm can be constructed that will produce all the possible star n-polygons 
excluding a sparse set. The procedure is as follows. 

AZgpSivthm: The symmetry relation j ,> = < ,> for star n-polygons results 

from partitioning any number or sum of numbers in the sum of some Fibonacci 
sequence equalling n around its relatively prime divisors. 

Examptz 1 ** The star pentagons (pentagrams) < j = | > are generated by sum-

ming the Fibonacci numbers F3 + F = 5. Since its prime divisors are 2 and 

3, respectively, partitioning 5 around 2 yields the star pentagon < 9 ? = < >. 

Examptz 2: The star heptagons < _ j- = { 9 | and <«| = \,f are generated by sum-
ming the Fibonacci numbers Fx + F2 + ^3 + Fh = 1 + 1 + 2 + 3 ' = 7. Partitioning 
the sum around 3 produces \ _ > = <, k The reader can quickly convince him-
self or herself that partitions around various alternative sums of this se-
quence which are relatively prime to 7 do not generate any other possibili-
ties. 

Examptd 3: Star nonagons are obtainable by summing the sequences 

and 
^ + ^ + F5 = 1 + 3 + 5 = 9 

F1 + F2 + F3 + F5 = 1 + 1 + 2 + 5 
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The former yields, upon partitioning around the sum F± + Fk , the star nona-

gons |^| = |5|9 while the latter yields, upon partitioning around the sum 

F1 + F2 + F3 or around F39 the previous star nonagon or i \ = j 1. 

I have examined all the possible star nonagons for all n inclusive of 

21. When n = 13 and 21, this algorithm breaks down and will not produce< , >, 
(21\ (21) 
\,j> and JIQI- For larger values of n, other discrepancies will appear (n 
need not be a Fibonacci number) , but always much fewer in number than the 
star n-gons that are generated. 

It therefore appears that the Fibonacci sequence on its own cannot ex-
haustively generate all star n-gons. The basic reason for this nonisomorphism 
is that the Fibonacci numbers are related to the combinatorics of spanning 
trees, the combinatorics of planar graphs, not of nonplanar graphs. 
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ABSTRACT 

The major theorem proven in this paper is that every positive integer 
necessarily converges to 1 by a finite number of iterations of the process 
such that, if an odd number is given, multiply by 3 and add 1; if an even 
number if given, divide by 2. 

The first step is to show an infinite sequence generated by that itera-
tive process is recursive. For the sake of that object, an integral vari-
able x with (£ + 1) bits is decomposed into (£ + 1) variables a0, a19 ..., 
a%9 each of which is a binary variable. Then, Pth iteration, starting from 
x9 has a correspondence with a fixed polynomial of aQ, ..., a9 , say 

fr(aQ9 ..., az)9 

no matter what value x takes. Since the number of distinct fr
 fs is finite 

in the sense of normalization, the common fr must appear after some itera-
tions. In the circumstances, the sequence must be recursive. 

The second step is to show that a recursive segment in that sequence is 
(1, 2) or (2, 1). For that object, the subsequences with length 3 of that 
segment are classified into twelve types concerned with the middle elements 
modulo 12. The connectability in the segment with length 5 or larger, and 
the constancy of the values at the head of each segment, specify the types 
of subsequences, found impossible, as well as with lengths 1, 3, and 4. The 
only possible segment is that with length 2, like (1, 2) or (2, 1). 


