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DEFINITIONS 

The Fibonacci numbers Fn and Lucas numbers Ln satisfy Fn + 2 =Fn + i + Fn 9 
F0 = 0 , F1 = 1 and Ln + 2

 = Ln + i + ^ J ^ O = 25 L1 = I. Also a and b designate 
the roots (1 + /5)/2 and (1 - /5)/2, respectively, of x2 - x - 1 = 0. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-430 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich^ Switz. 

For every positive integer as prove that 

(a2 + a - I) (a2 4- 3a + 1) + 1 

is a product m(m + 1) of two consecutive integers,, 

B-431 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. 

For which fixed ordered pairs (hs k) of integers does 

Fn(Ln+h " Fn + h) ~ Fn+i,^Ln + k " Fn + k) 
for all integers n? 

B-^32 Proposed by V. E. Hoggatt, Jr., San Jose State University, 
San Jose, CA. 

Let G„ = F„F2
 Q - F 3 . Prove that the terms of the sequence 

GQ9 GI9 G2, ... 
alternate in sign, 

B-433 Proposed by J. F. Peters and R. P1 etcher, St. John1s University, 
Collegeville, MN. 

For each positive integer n9 let qn and rn be the integers with 

n = 3qn + vn and 0 <_ vn < 3. 

Let {T(n)} be defined by 

T(0) = 1, T(l) = 39 T(2) = 49 and T(n) = hqn + T(rn) for n > 3. 

Show that there exist integers a9 b9 c such that 

m/ N fan + £1 
5P<"> - L — 5 — J * 

where [x] denotes the greatest integer in x. 
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B-**3*t Proposed by Herta T. Freitag, Roanoke, VA. 

For which positive integers n9 if any, is 

L3n-(-l)nLn 
a perfect square? 

B-^35 Proposed by M. Wachtel, H. Klauser, and E. Schmutz, Zurich, Switz. 

For every positive integer a, prove that no integral divisor of 

a2 + a - 1 

is congruent to 3 or 7, modulo 10. 

SOLUTIONS 

F!rst Term as GCD 

B-406 Proposed by Wray G. Brady, Slippery Rock State College, PA. 

Let xn = 4L3n - L\ and find the greatest common divisor of the terms 
of the sequence xx , x2, #3, ... . 

Solution by Paul S. Bruckman, Concord, CA. 

*n = Ln^L3n/Ln - L2) = Ln\ka2n - 4<a6)n + kb2n - a2n - 2(ab)n - b2n] 

= 3Ln[a2n - 2(ab)n + &2n]= 3Ln(an - bn)2 = 15LnF2, 
or 

xn = 15FnF2n, n = 1, 2, 3, ... . 

Note that a?! = 15F1F2 = 15. Hence, a^l^n, n = 1, 2, 3 It fol-
lows that the greatest common divisor of {xn} is x-^ = 15. 

Also solved by Herta T. Freitag, John W. Milsom, Bob Prielipp, E. Schmutz, 
A.G. Shannon, Sahib Singh, Lawrence Somer, M.Wachtel, Gregory Wulczyn, and 
the proposer. 

Generator of Pascal Triangle 

B-407 Proposed by Robert M. Giuli, University of California, Santa Cruz, CA. 

Given that 
°°  °°  

E JL ankxnyl 
1 - x - xy 

10 n = 0 k = 0 

is a double ordinary generating function for ank; determine ank. 

Solution by Paul S. Bruckman, Concord, CA. 

(1 - x -xy)-± = (1 - x(l + z/))-i = ]T*n(l + 2/>n = 1Lxnib(k) 
n=0 n=0 k=0^ ' 

oo n i \ 

-EE(J)*" 

2/* 

The binomial coefficient ( r, ) is defined to be zero for k > n. Hence, 
we may extend the second sum above over all nonnegative k, i.e., 

[1 -x-xy)-i = I ) E(fe)x"y 
n=0 & = oX ' 



1980] ELEMENTARY PROBLEMS AND SOLUTIONS 275 

T l m S' (n\ 
a<nk = I £ l» (n* k = °* 1» 2, • • • ' ) . 

Also solved 2?y W. O. J. Moser, A. G. Shannon, Sahib Singh, and the proposer. 

Proposal Tabled 

B-408 No solutions received. 

Exact Divisor 

B-409 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA. 

Let Pn = FnFn + a. Must Pn + Br - Pn be an integral multiple of 

V - ~P 
J- n + hr J~n + 2r 

for all nonnegative integers a and p? 

Solution by Sahib Singh, Clarion State College, Clarion, PA. 

Yes. Using 

we see that divisibility of 

P - P bv P - P 
n + 6r n -̂  n+hr n + 2r 

is equivalent to divisibility of 
L 2n+12r + a ^2n+a ^ y ^ 2 n + 8 r + a 2n + t+r + a' ' 

The result follows immediatly by seeing that 

^2n+12r+a ~ ^2n + a = ^2h + 8r + a " ^2n+>r + a^^M-r + *) °  

Also solved by Paul S. Bruckman, Bob Prielipp, and the proposer. 

Golden Limit 

B-410 Proposed by M. Wachtel, Zurich, Switz. 

Some of the solutions of 

5(x2 + x) + 2 = y2 + y 
in positive integers x and y are: 

(xs y) = (0, 1), (1, 3), (10,- 23), (27s 61). 

Find a recurrence formula for the xn and yn of a sequence of solutions 
(in, 2/n) • Also find l±m(xn + 1/xn) and lim(# 27#n)- as n -> °°  in terms of a = 
( i + ; / 5 ) / 2 . 
Solution by Paul S. Bruckman, Concord, CA. 

Multiplying the given Diophantine equation throughout by 49 completing 
the square9 and simplifying yields: 

(1) Y2 - 5X2 = 45 

where 
(2) X = 2x + 1, J = 2z/ + 1. 

The solutions of (1) in positive integers are known to be 
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However, due to (2), X and Y must also be odd. By inspection of the 
first few values (mod 3) of the Fibonacci and Lucas sequences, it is appar-
ent that these values are even if and only if their subscripts are multiples 
of 3. Hence, we must have m ~ ±1 (mod 3) in (3), Distinguishing between 
these cases, we obtain two distinct sets of solutions; 

(5) a £ 2 ) . *J2>> = <%+*. i>*,+X.o-' 
In terms of the original problem, this yields the following distinct solu-
tion sequences: 

(6) (atf>, y^) -{W6n + 2 - ».Mhn + 2 ~ D};.05 

(7) (*<2). J/i2)) - { ^ e » + * " D . ̂ e „ + , - D}:.O-
It is apparent from the fact that the successive indices of the Fibo-

nacci and Lucas sequences in (6) and (7) "increase by sixes," that we are 
interested in the second-order equation for a6, which must be the same for 
bs . Since a6 = 8a+5 and a12 = 144a+89 (special cases of av = aFr + Fr_1)* 
it is evident that a and b satisfy the common equation: 

(8) s12 - 18s6 + 1 = 0. 
Let 

(9) D n «-3n.+ 2 - 18*n + 1 + sn, where zn ='*<*> or z/<*>, fc » 1 or 2. 

We see from (6) and (7) that Dn = %(-l + 1 8 - 1 ) [using (8)], or 

(10) Dn = 8, n = 0, 1, 2, ... . 

This is a recursion for the x„ and t/„ , as required. 
A homogeneous recursion may be obtained by noting simply that 

This is equivalent to the following third-order recursion: 

(ID sn + 3 - 19sn + 2 + 19aB. + 1 - aB - 0, n = .0, 1, 2, ... . 

It is evident from (6) and (7) that 

and 
(13) lim x™zlx™ = lira y$Jy™ = a12 <fc = 1 or 2). 

n-»-oo n-)-oo n 

Also solved by the proposer. 

Trldlagonal Determinants 

B—411 Proposed by Bart Rice, Crofton, MD. 

Tridiagonal n by n matrices An = (a^-) of the form 

2a (a real) for 3 = i 
1 for 3 = i ± 1 

, 0 otherwise 

occur in numerical analysis. Let dn - det An . 

(i) Show that {d„} satisfies a second-order homogeneous linear recur-
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(ii) Find closed-form and asymptotic expressions for dn. 
(iii) Derive the combinatorial idantity 

-D./2] i v [<n-l)72] 

Solution by Paul S. Bruckman, Concord, CA„ 

We see that 

( i ) 

'2a 
1 
0 
0 
0 
0 

1 
2a 
1 
0 
0 
0 

0 
1 
2a 
1 
0 
0 

0 
0 
1 
2a 
1 
0 

0 
0 
0 
1 
2a 
1 

Taking determinants along the first row9 we find that dn = 2adn_1 - det Bn , 
where 

#1 1 0 0 ..-. 0^ 

B„ - i ? I ^n»2 

^0 ^ //(«-l) x(n-l) 

Taking the determinant of 5n along its first columns we see easily that det 
B = dn_2* Hence, we have the following recursions 

(3) dn+2 - 2adn+1 + dn = 09 n = 1, 29 35 ... . 

Note also the initial values of the recursions 

(4) dx = 2a9 d2 = 4a2 - 1. 

The characteristic polynomial of (3) is 

(b) p(x) = x2 - 2ax + 1, 

which has the zeros 

(6) u = a + /a2 - 1, y = a - /a2 - 1. 

It follows that dn is of the form pun + at?n9 for some constants pand q 
which are determined from the initial conditions. Note that 

uv = 1, u + v - 2a. 
We then find 

(7) d - ~ ~ ^ — ^ « = 1 5 2 5 3 5 ... . 

The behavior of dn as n •> °°  depends on the magnitude of as and we distin-
guish several cases . 

Co6e J: 0 <. |a| < 1. 

Let a = cos 9* Then M = e%Q, i? = e~* e , and so 

(8) <fn = s i n ( n +' l ) 6 / s i n 9. 
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In this case, the sequence (dn) is dense in 

(-esc 6, esc 0) = (-(1 - a2Yh
9 (1 - a2)'*) 

and oscillates within this interval without lending itself to approximation 
by an asymptotic expression. 

Co6e II: a = -1. 

Then u = V = -1. Since 

n 

k = 0 
thus 

k = 0 v 

Clearly, dn oscillates between these two values only, in this case. 

C(Ud llli a = 1. 

Here u = V = 1. Hence, 

n . n 
d» = X wn"V = £ 1 = n + 1. 

k=o fe=o 

Therefore, for this case, dn ^ n as n ->• °°. 

Co6e !(/: a < -l. 

Then y < -1 < u < 0, which implies un •> 0 as n -> °°. Hence 

,7 a ^ + 1 

Co6£ I/: a > l. 
n + l 

Then 0 < t; < 1 < u5 which implies yn + 0 and dn ^ ~ as n V«>. 
u - v 

To prove the given combinatorial identity, note that 

h(u - y ) ^ . , = h(u» - vn) = %E(^)an-fe(a2 - 1)***(1- (-1)*) 

t^(tt-l)] 

= L 2 ; + ,K a " 1 ( a 2 - i ) l t H 
k = 0 X ' 

tH(n-l)] / \fc 

In (9), let x = a 2 - 1, supposing Case I above, so that we can have x > 0. 
Then, since p = tan"1^ is in (0, %TT) , 

v = tan'Md - a2)V2/|a|} = cos^M |a|}. 

Also, sin 3? = (1 - a1)"2. Using the notation of Case I, v = 0 if a > 0 and 
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v = IT - 0 if a < 0. In either case, sin 9 = sin r. Thus, using (8), 

( sin nr/sin p, if a > 0; 
£?„_! = sin n0/sin 0 = < 

( (-1)""1 sin np/sin r9 if a < 0. 

Also, a2 = (1 + tf)"1, which implies that 

(1 + a:)"^""1', a > 0; 

•"(- ly^a + a?)-^'-", a < o. 
In either case, it follows from (9) that 

ih(n-i)} 

(1 + aO-HO-D ^ (2^n+ ij(~x)fe = s i n ^ / s i n ^> 

which is equivalent to the desired identity. 

Also solved by the proposer. 


