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In this paper, we show that there are an infinite number of heptagonal 
numbers which are, at the same time, the sums and differences of distinct 
heptagonal numbers. Similar results have been found for triangular numbers 
[1] and pentagonal numbers [2]. 

The heptagonal numbers are given by hn - n(5n - 3)/2, n = 1,2, 3, ..., 
where hn - hn_1 = 5n - 4«, Heptagonal numbers are represented geometrically 
by regular heptagons homothetic with respect to one of the vertices and con-
taining 2, 3, 4, ..., n points at equal distances along each side. The sum 
of all the points for a given n yields hn. Both Dickson [3] and LeVeque [4] 
provide reviews concerning heptagonal and related figurate numbers. 

Our analysis starts with the observation from a table of hn values [5] 
that 

h17 = he + h165 h58 = hl:L + h5?9 and \ l h = hl6 + fc123. 

Note that each of these equations is of the form hm = h5k+1 + hm_^, 
Since h5k_1 = (125k2 + 35k + 2)/2, setting 

hm - hm_x = 5m - 4 = h5k+1 = (125k2 + 35k + 2)/2, 
we have 

m = (125k2 + 35k + 10)/10. 
An induction proof shows that m is an integer for all integers k. This leads 
us to: 

TWdonom 1: For any integer k J> 1, 

^ 1 2 5 f c 2 + 3 5 k 10 = "5k+l + "125k2 + 3 5k ' 
10 10 

Now consider the subset of heptagonal numbers in Theorem 1 which yields 

(*} h , = In 4- In 
V ' 125(5fe)2 + 35 (5k) +10 5 (5k) +1 125(5k)2 + 35 (5k) ' 

10 10 

The LHS of (*) is equal to 

(**) (9765625k4 + 1093750k3 + 74375k2 + 2450k + 40)/40. 

But suppose that hs - h3_1 = 5s - 4 = (**) , so that we have 

s = (9765625k4 + 1093750k3 + 74375k2 + 2450k + 200) /200. 

An induction proof shows that s is an integer for all positive integers k. 
Therefore, we have our major result, 

Tkzo/i&n 2: For any integer k J> 1, 

and 

^ 3 1 2 5 k 2 + 1 7 5 k + 1 0 25k+l + 3 1 2 5 k 2 + 1 7 5 k 

h •= h 
3 1 2 5 k 2 + 1 7 5 k + 1 0 ^ 9 7 6 5 62 5 / ; "+ 1 0 9 3 7 5 0 k 3 + 7 4 3 7 5k2 + 2 4 5 0k+ 2 0 0 

h 
9 76 56 2 5kk + 1 0 9 3 7 5 Ok3 + 7 * t 3 7 5 k 2 + 2 4 5 0 k ' 

258 
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Since these results hold for all integers k J> ls we see that there are 
an infinite number of heptagonal numbers which are, at the same time9 the 
sums and differences of distinct heptagonal numbers. Q.E.D. 

For k = 1, 2, and 39 respectively9 Theorem 2 yields 

^331 = ^ 2 6 + ^ 3 3 0 = ^ 5 4 6 8 2 ~ ^ 5 . ^ 6 8 1 » 

^ 1 2 8 6 = " 5 1 + ^ 1 2 8 5 = ^ 8 2 6 5 1 3 ~ ^ 8 2 6 5 1 2 * 

^ 2 8 6 6 = ™7 6 + ^ 2 8 6 5 = \ l 0 6 1 1 9 " \ 106118° 

Verification is straightforward, if tedious. The list may be contin-
ued as desired. 

Triangular, pentagonals and heptagonal numbers all have the property 
exemplified by Theorem 2 for heptagonal numbers. Therefore, the question 
naturally arises as to whether either nonagonal or any or all other "odd 
number of sides" figurate numbers have the property. This conjecture is 
under investigation. 
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E. Cesarofs symbolic Fibonacci-Lucas identity (2u+l)n=u3n allows us, 
after the binomial expansion has been performed, to use the powers as either 
Fibonacci or Lucas subscripts and obtain useful identities [1]. These have 
appeared many times in the literature, and most recently have been the sub̂ -
ject of a problem [2]. 

Use of the identity enables us to provide a finite sum for F3n (or L3n) 
which is a linear combination of terms from F0 (or L0) to Fn (or Ln) inclu-
sive. For example, we may derive 

4L2 + 4L-L + L0 = L6 

or, with algebraic effort, we obtain 

16F^ + 32FS + 24F2 + SF1 + FQ = F1Z. 

In this note, I show that 


