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and finally,

[n/2]
@n 1 sin(n(2j ~ 1)/2m) = 273¢-D
i=1
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ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS

V. E. HOGGATT, JR.
San Jose State University, San Jose, CA 95192

1. INTRODUCTION

In July 1976, David L. Silverman (now deceased) discovered the follow-
ing theorem.

Theonem 1: There exist sets A and B whose disjoint union is the set of
positive integers so that no two distinct elements of either set have a Fi-
bonacci number for their sum. Such a partition of the positive integers is
unique.

Detailed studies by Alladi, Erdos, and Hoggatt [1] and, most recently,
by Evans [7] further broaden the area.

The Fibonacci numbers are specified as F, = 1, F, = 1, and, for all
integral n, F,,, = Fn+1 + F,.
Lemma: F,, is even, and Fynsy and Fo ., are odd.

The proof of the lemma is very straightforward.

Let us start to make such a partition into sets 4 and B. Now, 1 and 2
cannot be in the same set, since 1 = F, and 2 = Fy add up to 3 = F,. Also,
3 and 2 cannot be in the same set, because 2 + 3 =5 = Fs‘

4=1{1,3,6,8,9, 11, ...};
B ={2, 4, 5, 7, 10, 12, 13, ...}.

If we were to proceed, we would find that there is but one choice for

each integer. We also note, from F,,, = F,,, +F, , that F,., belongs in set
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A, and F,,,; belongs in set B for all n > 1. Thus, all the positive Fibo-
nacci numbers F, (m > 1) have their positions uniquely determined.

Proof of Theorem 1: The earlier discussion establishes the inductive basis.

Inductive Assumption: All the positive integers in {1, 2, 3, ..., F}
have their places in sets A and B determined subject to the constraint

that no two distinct members of either set have any Fibonacci number as
their sum.

Note that Fy_; -7 and F, +7 must lie in opposite sets, and this yields
a unique placement of the integers x, F;, < & < Fyy4; . By the inductive hy-
pothesis, no two integers x and y lying in the interval 1 < x, y < Fy which
are in the same set add up to a Fibonacci number; thus, we have constructed
and extended sets A and B so that this goes to F,.,» except we now must show
that no x, y such that

Fp_y <x < F and F, <y < Fp4,

can lie in the same set and have a Fibonacci number for their sum. Actually,
such x and y yield

Froqn <@ty < Fruyo

and there is no Fibonacci number in that interval. We now determine whether
x and y both lying between F; and F}, , can be in the same set and add up to
a Fibonacci number. Let

x=F +7 and y=F +J, 0<1i,J<F_,,

so that

27, < & + y <2F,,

2F, < 2F, + 1 + 4 < 2F, ..

The only Fibonacci number in that interval is Fy,,, and thus ¢ + J = Fy_;.

From the fact that Fj, + 7 and Fp_; - © lie in opposite sets and Fj + J
and F,,_, - J lie in opposite sets, then if F;, + Z and F; + J were in the same
set, so would be Fy_; — 7 and Fy_., - J,but if © + § = Fy_;, then the sum of
(Fx-1 - 2) and (Fx_1 - J) is Fyx-1, which violates the inductive hypothesis.
Thus, no two distinct positive integers x and y, Z,y < Fy,,;, lie in the same
set and sum to a Fibonacci number.

By the principle of mathematical induction, we have shown the existence
and uniqueness of the additive partition of the positive integers into two
sets such that no two distinct members of the same set add up toa Fibonacci
number. This concludes the proof of the theorem.

Theornem 2: TFor every positive integer N not equal to a Fibonacci number,
there exist two distinct Fibonacci numbers F, and F, such that the system

a+b=~N
b+ c = F,
a+c=F,

has solutions with a, b, and ¢ positive integers,

N+ F, - F, N+ F, - F, F, +F, - N

agq=—F " b=——7F—— Cc=—Ff

2 2 2

Comments: The sum of F, + F, + N is even. The numbers N, F,, and F, must
satisfy the triangle inequalities
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N +F, >F,,
N +F, >F,,
F, + E, > 1.

Proof: The proof will be presented for six cases. Recall that F,, is even
and Fj,4, with Fgy,,, are odd.

Case 1: N even, F,, < N < F

3k 3k+1°
F
F

F

t Py > N
+ 0> Fy

k-1 TV > Fyiq

3k-1
3k+1 1

Case 2: N odd, Fy < N < Fy .

F
F
F

a1 T U > Fy
+ > F3k+1
+Fy, >0

3k
3k+1

Case 3: N even, Fy , <N < F,.

1
F
F
F

+N>F
+N>F
+ F

3k+1 3k-1

3k-1 3k+1

> N

3k+1 3k-1

Case 4: N odd, Fy_, < N < Fy,.

1
F
F
F

sk-1 TN > Fyy
+ N > F3k-1

Py, >0

3k
3k

Case 5: N even, Fyp,y < N < Fgy. .,

F

F
F

+N>F3k+2
+N>F3k_
+F3k >N

3k+1
3k+2 1
3k+ 2

Case 6: N odd, F <N<F

3k+1 3k+2°
F
F

F

U > Fyy,
+N>Fy
+F3k>N

3k
3k+2

3k+2

From the direct theorem, @ and ¢ lie in opposite sets and b and ¢ lie
in opposite sets; hence, a and b lie in the same set.
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Coroflary 1: 1In each of the six cases above, it is a fact that
a-b=F - E,
which is always a Fibonacci number (Sarsfield [5]).

Conollary 2: F,, and F,, never add to a Fibonacci number, nor do 7, ,, and
Fopneq for m ¢ m# 0,

2. EXTENSIONS OF PARTITION RESULTS

In this section, we shall use Zeckendorf's theorem to prove and extend
the results cited in [3].

Zeckendorf's theorem states that every positive integer has a unique
representation using distinct Fibonacci numbers F,, Fg, ..., F,, ..., if no
two consecutive Fibonacci numbers are to be used in the representation.

Theorem 1: The Fibonacci numbers additively partition the Fibonacci numbers
uniquely.

Proo4: Since F, + F, = F, if and only if p=m+2=n+1, my n > 1,by
Zeckendorf's theorem, let set A, contain F,,,, and set 4, contain F,,,,,
n > 1. No two distinct members of 4, and no two distinct members of 4, can
sum to a Fibonacci number by Zeckendorf's theorem.

Theorem 2: The Lucas numbers additively partition the Lucas numbers unique-
1y.

Proog: Similar to the proof of Theorem 1, since the Lucas numbers enjoy a
Zeckendorf theorem (see Hoggatt [6]).

Theorem 3: The Lucas numbers additively partition the Fibonacci numbers
uniquely.

{1, 5, 8, 34, 55, ...}
{Fzs F59 FG: ng FjL05 ==-}

Discussion: Let A,

{FZ’ F'—m+1’ F4n+2}n=19
and Ay = {F3, Fys Fupyss Funsnly-1-
The proof is omitted.

Theorem 4: The union of the Fibonacci numbers and Lucas numbers additively
partition the Fibonacci numbers wuniquely into three sets—4,, 4,, and 4;—
such that no two distinct members of the same set sum to a Lucas number and
no two distinct members of the same set sum to a Fibonacci number.

Proof: ¥From L, = F,,1 + F,_;, we see that Zeckendorf's theorem guarantees
a unique representation for each L, in terms of Fibonacci numbers.

Let 4, contain Fgj,_,, 4, contain Fy,,, and A, contain F,, ,, for n > L.
No two consecutive Fibonaceci numbers can belong to the same set because they
would sum to a Fibonacci number, and no two alternating subscripted Fibonacci
numbers can belong to the same set because they would sum to a Lucas number;
therefore, the above partitioning must obtain.

Theorem 5: The union of the sequences {F; + Fy, ln.y, =1,2, ..., k, par-
titions the Fibonacci numbers uniquely into k sets so that no two members of
the same set add up to a member of the union sequences.
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Theornem 6: The sequence {5F,} uniquely partitions the Lucas numbers.
Discussion: Let Ay = {2, Ly, _ 1> Ly, Jn=1, and
4,

{1, 3, Luyyrs Dunsolpage
The proof is omitted.

There are clearly many more results which could be stated but we now
now leave Fibonacci and Lucas numbers and go to the Tribonacci numbers

T, =T,=1,T, =2, ..., T =T  +T,,  +T,, (n>1).

1 2 3 n+3 n+2 1

3. TRIBONACCI ADDITIVE PARTITION OF THE POSITIVE INTEGERS

Let
Tl T2=1,T3=2,

Tn+3 = Tn+2 + Tn+1 + Tn

and

for all n > 1. Below, we shall show that the set {3, I;};=Z = R induces an
additive partition of the positive integers uniquely into two sets A, and 4,
such that no two distinct members of A, and no two distinct members of 4,
add up to a member of R, and, further, every n ¢ R can be so represented.

Since 7, ,4 =T,,, + T,,, +T,, it is clear that T,,, and T,,, + T, are
in opposite sets, and so say. T, = 1 is in set 4; and T3 = 2 is in 4, since
we wish to avoid 3. Now, T3+ T, must also be in 4, since 7, + T, + T, =T,.
Thus, T3,4+7 and T3,4, are in A; and T3, is in Ay, T3,_7 + T3y and Typyy + T3y,
are in 4, and T + T,,4, is in A,. This is easily established by induc-—
tion.

If Ty,41 + 73,4, is in A, then Ty, ; and Ty, are in 4,. Since T,, _, +
Ty, and T3n+1 + T,, are in 4,, thenT,, _, and T3n+1 with Ty, , and Ty, ,, are
all in A;. This places all the Tribonacci numbers.

Since T,,,, is in 4, then T + 73,43 is in 4,. Thus, since Ty, ,,
is in 4,, then T is in 4,. This completes
the induction.

Now that all the Tribonacci numbers are placed in sets 4; and 4,, we
place the positive integers in sets 4A; and 4,.

It is clear that (7, - Z) and 7 are in opposite sets, except when 7 =
T,/2. From T,,, =T 4q +Tpyp + Tpyq, we get

3n+1l

3n+2

sn+3 T T3p4y 1s in A,, and Ty, .4

Topaw + Ty =Tpag + (Tpyp + Tpq +7,) = 2T, 5.
Thus, generally,
Toey/2 +T,/2=1T,,..

Since 7,,_, and T,, are even, and T,,,, and T,,,, are odd, we get two
different sets. an/Z and Tun+q/2 must lie in opposite sets because their
sum is T,,,,. Also, T,,_,/2 and Tun+3/2 must lie in opposite sets because
their sum is T,,,,. T,/2 =2 is in set 4,, and T,/2 = 22 is in A;. Thus,
Tg,/2 is in A,, and Tgy,,,/2 is in 4;. T,/2 =1 is in 4;, and T,/2 = 12 is
in 4,3 thus, T, ,.,/2 is in A;, and T,,,,/2 is in A,. So, by induction, the
placement for all integers 7 = T,/2 is complete.

The use of 3 in set R forced us to put 1 in A, and 2 in 4, as an ini-
tial choice. Now, all T, and T,/2 have been placed. Since (I, - Z) and ¢
are in opposite sets except when 7 = T,/2, we can specify the unique place-
ment of the other positive integers.
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This establishes the uniqueness of the bisection. Each T,, each T, +
T,,,» and each T, /2 an integer is uniquely placed.

Next, consider n ¢ R, n # T, +7,,,- Then
a+b=mn
b+c=T,
c+a=1T,

is solvable provided that (n + T, + T;) is even and
T, + T, -n >0
T, +n-T7, >0
T, +n-Ty >0

Lemma: For every né¢ R and n # T, + T,,, there exist two Tribonacci numbers
T, and T, such that T, + T, + n is even, and

Ty + T, -=n >0
Ts +n-T, >0
T, +n-Ts >0

Proof: There are several cases. Let T, < n < T,,, where T, and T,,, are
both even; then, if » is even, we are in business. If n is odd, then

T, <m < Tyyq < Tyyy

where T, and T,,, are even and T;,, is odd, and n # T;_; + T, then either
T, _1»ny, Ty or Ty 15 ny Ty, will do the job.

Next, let Ty < n < Ty;,; where T, is odd and T:4; is even. Ifn is odd,
we are in business. If n is even, Ti¢41, #s Te4o or Ty ny, T4-7 will do the
job except when n = Ty .1 + T¢.

Finally, let Ty < n < Tp,; where T, and T;,; are odd. If n is even, we
are in business; if »n is odd, then n, T i1, Ty42 or T4i_1, n, Ty will do the
job except when n = Ty + Tyy41. )

Thus, if n # T, and n # T, + Tt_1, the system of equations

a+b=mn
b+c=17T,
e +a=1T;

is solvable in positive integers. Note that ¢ and g cannot be in the same
set, nor can b and ¢ be in the same set. Therefore, a and b are in the same
set, so that n is so representable.

We now show that m =T, + T,_, are representable in the same side on
which they appear as the sum of two integers, and take the cases for

n = Tt + Tt—l'

Earlier we noted that T3,.; and T3, are in A; and T3u41 + T3n42 is in 44,
so that T3u41 + Tan+2 is representable as the sum of two elements. We now
look at 6 = 5 + 1.

As we said, Taps1+Tsns2s Tan+Tans1s Tansv+Tanss, and Ta,pg + Doy
-lie in A,. Look at

Tanes ¥ T = Ty + Tap3) = Tapys = Tapyse
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This is in set 4,, because 7T,,,, is in 4;. Thus, since (Tan+|+ + T3n+3) and

(T3n+5 - T3n+3) are both in 4,, T,  ;+7T,, , has a representation as the sum
of two elements from set 4,.
Next, consider

T3n+l+ + T3n+3 - (T3n+1 + Tan)

= Tappy Y Tapps T Tapyn = (Tapyp + Ty + Ty)

= Tyuys = Tangso
which we have seen to lie in Az’ so that

(Typps = Touys) + (Tapyr + T3y) = Typpn + Tapysg

is the sum of two integers from A,, since both are in 4,. This completes
the proof.

If n# 7T, or n# T, +T, ,,, then n has a representation as the sum of
two elements from the same set. If n =T, + Ty,1s then if n = T3m+14-T3m+2,

both Ty ,, and T, ., appear in A,, and n has a representation as the sum of

two elements from 4,. Ifn =17, ., + T3m+3 or n =T, +7T, ,,, then each
has a sum of two elements from A,.
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Let us call S,,; the set of all permutations of the integers {1,2,...,

m + 1}. Any permutation o from 5,4+, may be decomposed into b blocks B, B,,

.» By defined by the following property: each block consists of integers
increasing unit by unit, and no longer block has the same property.

Example: m = 8, o = 314562897; there are b = 6 blocks:
B, =3, B, =1, B, = 456, B, = 2, B, = 89, B, = 7.

The lengths of the blocks form a b-composition g of m + 1 (see [1]); in the
above example, q = (1, 1, 3, 1, 2, 1).



