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and f i n a l l y , 
[n/2] 

(27) n sin(TT(2j - l ) / 2 n ) = 2 " i ( n " l } . 
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ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 

V* E. HOGGATT, JR. 
San Jose State University, San Jose, CA 95192 

1. INTRODUCTION 

In July 19763 David L. Silverman (now deceased) discovered the follow-
ing theorem. 

Tho.OH.2m 1' There exist sets A and B whose disjoint union is the set of 
positive integers so that no two distinct elements of either set have a Fi-
bonacci number for their sum. Such a partition of the positive integers is 
unique. 

Detailed studies by Alladi, Erdos, and Hoggatt [1] and, most recently, 
by Evans [7] further broaden the area. 

The Fibonacci numbers are specified as F1 = 1, F2 = 1, and, for all 
integral n, Fn + 2 = Fn + 1 + Fn . 

LmmCL'* F3m is even, and FSm + 1 and F3m+2
 a r e odd. 

The proof of the lemma is very straightforward. 
Let us start to make such a partition into sets A and B. Now, 1 and 2 

cannot be in the same set9 since 1 = F2 and 2 = F3 add up to 3 = Fh. Also9 
3 and 2 cannot be in the same set9 because 2 + 3 = 5 = Fg. 

A = {1, 3, 69 8, 99 11, . . . } ; 

B = {29 4, 59 79 10, 12, 13, ...}. 

If we were to proceed, we would find that there is but one choice for 
each integer. We also note, from Fn + 2 = ̂ n + 1

 + Fn * that F2 belongs in set 
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A9 and F2n+1 belongs in set B for all n >_ 1. Thuss all the positive Fibo-
nacci numbers Fm (m > 1) have their positions uniquely determined. 

VKOOJ ofi Tk.dQK.QM 1: The earlier discussion establishes the inductive basis. 

Inductive. AA&umptLon: All the positive integers in {1, 2, 39 ..., Fk} 
have their places in sets A and B determined subject to the constraint 
that no two distinct members of either set have any Fibonacci number as 
their sum. 

Note that Fk„1-i and Fk + i must lie in opposite sets5 and this yields 
a unique placement of the integers x9 Fk < x < Fk + 1 . By the inductive hy-
pothesis , no two integers x and y lying in the interval 1 <_ xs y <_ Fk which 
are in the same set add up to a Fibonacci number; thus9 we have constructed 
and extended sets A and B so that this goes to Fk+1> except we now must show 
that no x5 y such that 

F*-i < x < Fk and Fk < y < Fk + 1 

can lie in the same set and have a Fibonacci number for their sum. Actually, 
such x and y yield 

Fk+i < x + y < Fk+2» 
and there is no Fibonacci number in that intervale We now determine whether 
x and y both lying between Fk and Fk+1 can be in the same set and add up to 
a Fibonacci number. Let 

x = Fk + i and y = Fk + J , 0 < i, j < Fk _ 1, 

so that 
2Fk < x + y < 2Fk+1 

2Fk < 2Fk +i +3 < 2Fk + 1. 

The only Fibonacci number in that interval is Fk + l5 and thus i + j = Fk_1. 
From the fact that Fk + i and Fk_1 - i lie in opposite sets and Fk + j 

and Fk_1-j lie in opposite sets9 then if Fk + i and Fk + J were in the same 
sets so would be Fk^± - i and Fk^1 - j,but if i + J = Fk_1$ then the sum of 
Ô c-i ~ "O and (Fk-i ~ J°) i s ^k-iJ which violates the inductive hypothesis. 
Thus, no two distinct positive integers x and y9 xsy <_ ̂ + 1 , lie in the same 
set and sum to a Fibonacci number. 

By the principle of mathematical induction, we have shown the existence 
and uniqueness of the additive partition of the positive integers into two 
sets such that no two distinct members of the same set add up to a Fibonacci 
number. This concludes the proof of the theorem. 

ThdJOKOm 2° For every positive integer N not equal to a Fibonacci number, 
there exist two distinct Fibonacci numbers Fm and Fn such that the system 

a + b = N 
b + c = Fm 
a + c - Fn 

has solutions with as b5 and c positive integers, 

_ N + F" " F« * - N + ^ " Fn = Fn + Fn - N 
a _ _ - 9 b _ 2 , 0 2 

Comm&wU: The sum of Fm + Fn + # is even. The numbers 217, Fn , and Fm must 
satisfy the triangle inequalities 
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tf + Fn > Fm . 
* + Fm > Fn , 

F + F > # . 

Vh.00^1 The proof will be presented for six cases. Recall that F3m is even 
a n d ^3m+i with F3m + 2 are odd. 

CoAe 7: tf even, F3 k < # < F3/, + 1 . 

F 3 f c - 1 + F 3 f e + . l > N 

F3k+1 + N > F 3 f c - 1 

F 3 k - 1 + / ^ > F 3 k + 1 

Co6e 2: tf odd, F _ < 27 < F. 3k xv x 3 k + l * 

^ k + 1 + ^ > F3k 

F3k
 + N > F3k+l 

F3k+1 + F3k > N 

Co4fc 3 : 21/ even, F3k_1 < N < F, 
3k 

F3k+l + N > F3k-1 

F3k-1 + N > F3k+1 

F3k+1 + F3k-1 > N 

CcU>t 4: N odd, F3k_1 < N < F3k. 

F3k-1 + ^ > F3k 

F3k + N > F3k-1 

F3k + F3k-1 > N 

Cdie. 5 : 217 even, F^., < N < F 3 J c + l " L 3k+ 2' 

F 3 k + 1 + N > F3k+2 

F 3 f c + 2 + N > P3k-1 

F3k+2 + F3k > N 

Cain 6: N odd, F,y., < N < F 3J:+1 " x 3fc + 2" 

F3k
 + N > F3k + 2 

F3k+2 + N > F3k 

F3k+2 +F3k > N 

From the direct theorem, a and a lie in opposite sets and b and o lie 
in opposite sets; hence, a and b lie in the same set. 
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CoSioLta/iy 1: In each of the six cases above, it is a fact that 

a - b = Fm - Fn , 

which is always a Fibonacci number (Sarsfield [5]). 

Co/LOttaAy li F2m and F2n never add to a Fibonacci number, nor do F2m + 1 and 
F2n + 1 for n 4 m 4 0. 

2. EXTENSIONS OF PARTITION RESULTS 

In this section9 we shall use Zeckendorffs theorem to prove and extend 
the results cited in [3]. 

ZeckendorfTs theorem states that every positive integer has a unique 
representation using distinct Fibonacci numbers F29 F39 ..., Fn , ..., if no 
two consecutive Fibonacci numbers are to be used in the representation* 

ThtOfiQin 1: The Fibonacci numbers additively partition the Fibonacci numbers 
uniquely. 
Vtiooji Since Fm + Fn = Fp if and only if p=m + 2=n + l9 m9 n > l9by 
Zeckendorffs theorem, let set A1 contain F2n + 1 and set A2 contain FZn+Z9 
n >_ 1. No two distinct members of A1 and no two distinct members of A2 can 
sum to a Fibonacci number by Zeckendorffs theorem. 

ThdOKom 2: The Lucas numbers additively partition the Lucas numbers unique-
ly. 

VHJOO^I Similar to the proof of Theorem 1, since the Lucas numbers enjoy a 
Zeckendorf theorem (see Hoggatt [6])e 

Thzofiem 3*> The Lucas numbers additively partition the Fibonacci numbers 
uniquely. 

VsUcuAAlon: Let A1 = { 1 , 5 5 89 34 , -55, . . . } 

= {F29 F59 Fs 9 F 9 s F 1 Q S . . . .} 

= \F25 F^n+ls ^itn+2 J"n = l» 
and A2 = {F3, Fh, F l t n + 3 S F 4 n + lt } ^ = 1 . 

The proof is omitted, 

ThdOKOm 4' The union of the Fibonacci numbers and Lucas numbers additively 
partition the Fibonacci numbers uniquely into three sets—A19 A29 and A3— 
such that no two distinct members of the same set sum to a Lucas number and 
no two distinct members of the same set sum to a Fibonacci number. 

Vtwo fa From Ln = Fn + 1 + Fn.l5 we see that Zeckendorf fs theorem guarantees 
a unique representation for each Ln in terms of Fibonacci numbers. 

Let A1 contain F3n_ls A2 contain F3n, and A3 contain F3n+1 for n > I. 
No two consecutive Fibonacci numbers can belong to the same set because they 
would sum to a Fibonacci number, and no two alternating subscripted Fibonacci 
numbers can belong to the same set because they would sum to a Lucas number; 
therefores the above partitioning must obtain. 

Tk&Q/iem 5: The union of the sequences {Fi + Fi + j}^=2s J = l»2, ...9 k9 par-
titions the Fibonacci numbers uniquely into k sets so that no two members of 
the same set add up to a member of the union sequences. 
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ThzoJiom 6: The sequence {5Fn} uniquely p a r t i t i o n s the Lucas numbers. 
VLbCUAAlon: Let A1 = {2 , Lhn_19 Lhn}™=19 and 

A2 = {1, 3, Lhn + 1 , ^itn+2^n=l* 
The proof is omitted. 

There are clearly many more results which could be stated but we now 
now leave Fibonacci and Lucas numbers and go to the Tribonacci numbers 

T l = ? 2 = L T 3 = 2 ' • • • > Tn+3 = Tn+2 + T n + 1 + Tn , ( » > D . 

3. TRIBONACCI ADDITIVE PARTITION OF THE POSITIVE INTEGERS 

Let 
2\ - T2 = 1, T3 = 2, 

ana ™ — T7 4- T7 4- T 
-Ln-h3 x n + 2 T •'n+l T i n 

for all n >_ 1. Below, we shall show that the set {3, Tn}~= 2
 = ̂  induces an 

additive partition of the positive integers uniquely into two sets A1 and A2 
such that no two distinct members of,A1 and no two distinct members of A2 
add up to a member of R9 and, further, every n t R can be so represented. 

Since Tn+3 = Tn + 2 + Tn+1 + Tn9 it is clear that Tn + 2 and Tn + 1 + Tn are 
in opposite sets, and so say•72 = 1 is in set A1 and T3 = 2 is in A2 since 
we wish to avoid 3. Now, T3 + Th must also be in A2 since T2 + T3 + Tk = T5. 
Thus, T3n + 1 and T3n + 2 are in A± and T3n is in 42, T3n.1 + T3n and2T3n + 1 + T3n 
are in ̂ 42 and T3n + 1 + T3n + 2 is in A ^ This is easily established by induc-
tion. 

I f T3n+1 + T3n + 2 i s i n ^ 1 > t h e n ^3^2 + 3 a n d T 3n a r e i n ^ 2 ' S i n c e T 3h _ ± + 
573n a n d ^ S n + l + T 3n a r e i n ^ 2 > t h e n T 3 n - 2 a n d T 3 n + 1 w i t h T 3 n - 1 a n d T 3 n + 2 a r e 

all in A±. This places all the Tribonacci numbers. 
Since T3n+1 is in A19 then T3n + 2 + T3n + 3 is in A2. Thus, since T3 n + 2 

is in A19 then ^3n + 3 + ?3n + li is in A29 and T3n + 5 is in A±. This completes 
the induction. 

Now that all the Tribonacci numbers are placed in sets 4i and A2, we 
place the positive integers in sets A1 and i42 . 

It is clear that (Tn - i) and £ are in opposite sets, except when i -
Tn/2. From Tn + h = Tn + 3 + Tn+2 + 2,n + 1, we get 

-^n + k + ™n ~ ™n + 3 + \-̂ n + 2 +-^n + l + -*n ' = 2-£ „ + 3 • 

Thus, generally, 

Since ^4n_i and ^4n are even, and ̂ i^-n and Thn + 2 are odd, we get two 
different sets. T^n/2 and T^n+h/2 must lie in opposite sets because their 
sum is T^n + 3. Also, Thn_1/2 and T1+n + 3/2 must lie in opposite sets because 
their sum is Thn+2. Tj2 = 2 is in set A29 and ̂ 8/2 = 22 is in Ax. Thus, 
./Z78n/2 is in A2, and T8n + l^/2 is in 4X. T3/2 = 1 is i n ^ , and T7/2 = 12 is 
in'i4.2; thus, TQn + 3/2 is ±n-A19 and TQn + 7/2 is in ̂ 2. So, by induction, the 
placement for all integers % - Tnj2 is complete. 

The use of 3 in set R forced us to put 1 in A1 and 2 in A2 as an ini-
tial choice. Now, all Tn and Tn/2 have been placed. Since (Tn - i) and i 
are in opposite sets except when £ = Tn/29 we can specify the unique place-
ment of the other positive integers. 
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This establishes the uniqueness of the bisection. Each Tn , each Tn + 
Tn+19 and each Tn/2 an integer is uniquely placed. 

Next, consider n i R, n + Tn + 57n + 1- Then 

a + b = n 
b + Q = Te 

Q + a = Tt 

i s s o l v a b l e p rov ided t h a t (n + Ts + Tt) i s even and 

Ts + Tt - n > 0 

Ts + n - Tt > 0 

Tt + n - T8 •> 0 

Lemma: For every ntR and n £ Tn + Tn + 1 t h e r e e x i s t two T r i b o n a c c i numbers 
!FS and Tt such t h a t Ts + Tt + n i s even, and 

Ts + Tt - n > 0 

Ts + n - Tt > 0 

Tt + n - Ts > 0 

VKOOJ: There are several cases. Let Tt < n < Tt + 1 where Tt and Tt + 1 are 
both even; then, if n is even, we are in business. If n is odd, then 

Tt <n < Tt+1 < Tt+2 

where Tt and Tt + 1 are even and Tt + 2
 i s odd, and n ^ Tt-i + y t ) then either 

51t_1, n, Tt or Tt + 19 n, Tt+ 2 will do the job.. 
Next, let Tt < n < Tt + 1 where Tt is odd and Tt + 1 is even. If n is odd, 

we are in business. If n is even, Tt + l9 n, Tt + 2 or Tt , n, ̂ t-i will do the 
job except when n = Tt _ x + Tt. 

Finally, let Tt < n < Tt+1 where Tt and Tt+1 are odd. If n is even, we 
are in business; if n is odd, then n, Tt + l s Tt+2 or Tt_l9 ns Tt will do the 
job except when n =* Tt + Tt+i. 

Thus, if n ̂  TY and n ^ Tt + Tt_x, the system of equations 

a + b • 

is solvable in positive integers. Note that o and a cannot be in the same 
set, nor can b and c be in the same set. Therefore, a and b are in the same 
set, so that n is so representable. 

We now show that n = Tt + Tt_1 are representable in the same side on 
which they appear as the sum of two integers, and take the cases for 

Earlier we noted that T3n + i and T3n + 2 are in A1 and T3n + 1 + T3n + 2 is in Al9 

so that T3n + 1 + T3n + 2 is representable as the sum of two elements. We now 
look at 6 = 5 + 1. 

As we said, T3n + 1 + T3n + l9 T3n+T3n + ls T3n + h + T3n + 5, and T3n + ,3 4- T3n + k 
lie in i2- Look at 

•^3n + 5 + ^3n + 4 ^3rc + 4 + ™ 3 n + 3 ' ™ 3n + 5 ™ 3n + 3 * 
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This is in set A2, because T3n + 3 is in A±. Thus, since (T3n + h + T3n + 3) and 
(̂ 3n + 5 "" ̂ 3n + 3^ a r e ̂ o t n i n ̂ » ^ 3 n + 5 + ̂ 3n + ̂  ̂ a s a representation as the sum 
of two elements from set A2„ 

Next, consider 

T3n + *+ + ™3n + 3 " ^ 3 n + l + ^3rc ' 

^ 3 n + 4 + "^3n+3 + ™3n + 2 ~ (™3n + 2 + ™3n + l + -^3n ' 

-1 3n + 5 2 3 n + 3 s 

which we have seen to lie in A2, so that 

'^3n+5 ~ 3n + 3^ + ^ 3n + 1 3n ' = ^ 3n + k + -^3n+3 

is the sum of two integers from A2, since both are in A2. This completes 
the proof. 

If n £ Tm or n =fi Ts + Ts + 1 , then n has a representation as the sum of 
two elements from the same set. If n = Ts + Ts + 1 , then if n = T3m + 1 + T3m + 2 , 
both T3m+1 and T3m + 2 appear in A19 and n has a representation as the sum of 
two elements from A, . If n = T~m.0 + 2V ...q or n = 2V + S1,^, , then each 

1 3m + 2 3 m + 3 3m 3 7 7 7 + 1 ' 

has a sum of two elements from A2. 

REFERENCES 

1. K. Alladi, P. Erdos, and V. E. Hoggatt, Jr. "On Additive Partitions of 
Integers." Discrete Mathematics 22 (1978):201-211. 

2. Robert E. F. Higgins. "Additive Partitions of the Positive Integers." 
Unpublished Master's thesis, San Jose State University, August 1978. 

3. V. E. Hoggatt, Jr. "Additive Partitions I." The Fibonacci Quarterly 
15, No. 2 (1977):166. 

4. V. E. Hoggatt, Jr. "Additive Partitions II." The Fibonacci Quarterly 
15, No. 2 (1977):182. 

5. Richard Sarsfield, private communication. 
6. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton-

Mifflin Publishing Company, 1969. Theorem VII, p. 76. 
7. R. Evans. "On Additive Partitions of Alladi, Erdos, and Hoggatt." To 

appear. 

THE NUMBER OF MORE OR LESS "REGULAR" PERMUTATIONS 

G. KREWERAS 
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Let us call Sm+1 the set of all permutations of the integers {1,2,..., 
m + 1}. Any permutation a from Sm + 1 may be decomposed into b blocks Bl9B2> 
..., Bh defined by the following property: each block consists of integers 
increasing unit by unit, and no longer block has the same property. 

Example.: m = 8, a = 314562897; there are b = 6 blocks: 

B1 = 3, B2 = 1, B3 = 456, Bh = 2, B5 = 89, B& = 7. 

The lengths of the blocks form a ̂ -composition q of m + 1 (see [1]); in the 
above example, q - (1, 1, 33) 1, 2, 1). 


