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1 . INTRODUCTION 

A fcth-order divisibility sequence is introduced in Hall [3] as a sequence 
of rational integers uQ , uls u2, ...9un9 . . . satisfying a linear recurrence 
relation 

(1) un + k = a1un+k_1 + • • • • + aku-n9 

where the afs are rational integers, and um divides un whenever m divides n9 

for all positive integers m and n. 
Some examples follow: 09 1, 2, 4, 8, .'. . is a first-order divisibility 

sequence, while 0, 1, 2, 3S 4, ... is a second-order divisibility sequence. 
Another second-order divisibility sequence is the Fibonacci sequence 

09 1, 1, 2, 39 59 89 ..., 

whole recurrence relation is 

un + 2 = un + l "*" un • 

If this recurrence relation is generalized to 

un + 2 = xun+l "*" yuns 

where x and y are indeterminates, the sequence resulting from the initial 
terms u0 = 0 and u± = 1 is the sequence of Fibonacci polynomials. Like the 
numerical Fibonacci sequence, these polynomials satisfy the divisibility 
property um\un (in the ring I[x9 y] of polynomials in x and y with integer 
coefficients) whenever m\n. Unlike the Fibonacci numbers, however, the poly-
nomial is irreducible (in I[xs y]) whenever the index m is irreducible in I. 
Thus9 the divisibility properties of the more general sequence differ from 
those of the numerical sequence. 

This example and others lead us to extend the coverage of the term feth-
order divisibility sequence to include sequences for which any number of the 
a1s in (1) and any number of the initial terms uQ9 ul9 ..., uk_1 are indeter-
minates. The resulting sequence may then be a sequence of integers, but it 
may, instead, be a sequence of polynomials in-one or more indeterminates x±, 
..., Xp, In this case, our discussion of divisibility properties refers to 
arithmetic in the ring I[xl9 ..., xp]. 

When a divisibility sequence is to be discussed without reference to its 
recurrence order, we call it a linear divisibility sequence. Thus, a dis-
tinction is made between the sequences at hand and nonlinear divisibility 
sequences, such as the elliptic divisibility sequences studied by Ward [7], 
[8]. 

The only known linear divisibility sequences are resultant sequences and 
their divisors, as defined below. Our purpose in this paper is to discuss 
generating functions of such sequences. Suppose 

Ht) = II (t ~ xj and Y(t) = ft (* - y<) 
^-i ' j-i. J 

are polynomials with integer coefficients; here, any number of the roots Xi 
and y. may be indeterminates. A resultant sequence {un}, n = 09 1, ..., is 
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a sequence of the form 

q p X? ~ y" 

(2) un = n n i-—r • 
Thus, u„ = Rn/Rl9 where Rn = Rn(X, Y) is the resultant of the polynomials 

Hit - x$) and IlU-2/7). 
i = i j = i J 

A divisor of a resultant sequence {un} is a linear divisibility sequence {vn}, 
n = 0, 1, . .., such that vn\un for n = 1, 2, ... . 

Ward proved in [5] that every resultant sequence is a linear divisibility 
sequence, and conjectured repeatedly that every linear divisibility sequence 
is a divisor of a resultant sequence. No proof of this conjecture seems to be 
known or imminent, even in the case that all the roots are indeterminates! 

Before continuing directly toward an investigation of generating func-
tions, we pose another problem, closely related to Wardfs conjecture. For 
(not necessarily distinct) algebraic integers % and £, let F be the smallest 
normal field containing both £ and £. Define 

o) Vn = n €
g z f > » = °> i> •••> 

the product being taken over all automotphisms S of F. Then the terms vn are 
rational integers and the sequence {vn} a linear divisibility sequence. We 
call this the linear divisibility sequence belonging to g, £. Suppose now 
that {un} is a numerical resultant sequence and that {fn} is a divisor of {un}. 
Suppose, further, that un = vn - 1 and {yn} has no divisors of its own.except 
(0, 1, 1, ...) and {vn}o Must {vn} be a linear divisibility sequence belong-
ing to some pair of algebraic integers appearing in (2)? 

2. RECIPROCAL POLYNOMIALS 

Suppose A ̂  0. A polynomial 

H(t) = h0 + h^ +' • • • + h2kt2k 

of even degree 2/c is.an /[--reciprocal polynomial of the first kind if 

Kk-q = Ak'qhq
 f o r q = 0, 1, ..., k, 

and an ̂ -reciprocal polynomial of the second kind if 

hlk.q = -Ak'qhq for q = 0, 1, ..., fc. 
In both cases, the roots of H(t) occur in pairs whose product is A; converse-
ly, any polynomial with this property is an ̂ -reciprocal polynomial. A dis-
cussion may be found in Burnside and Panton [2, pp. 63-64]. 

Suppose 
2k 2k 

f = /(*> = Z f * t l and 9 = gW = E 9* tJ> 
j--o J 

and write 

f 9J* ~ fa$e f o r max{a> g} ^ 2?c 
[a, 6] = < 

I 0 otherwise. 
Clearly [g, a] = -[a, B]. 
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Lemma 1g: Suppose 

0 £ a <_ 2k and 0 <_ B <_-2k. 

If / and g are ̂ -reciprocal polynomials of the first kind9 then 

[ a , B] = Aa+*-2k[2k - a , 2fe - B ] . 

Z^M; > . B] = gJz - fa9z 
Sk + qlk+q' ~ •'k + q^k + q' 

= 4 ' a Aq'f , - Aqf Aq'g, 
*k-q Jk-q' k-q ak-q' 

= Aq+q'[k - q, k - q'] 
= Aa + R-2k[2k - a , 2/c - 3 ] . 

Th.ZOH.ejn la: Suppose 

*•(*> = /o + A * +-••• + Afc*2" 
and 

Git) = g0 + 9lt + • • • + <72fct2fc 

are polynomials of degree Ik > 0* Let 

ff(t) = F(t)G'(t) -G(t)F'\t) = hQ +hxt +--•.+ \k_Jhk-'1. 
Suppose F(t) and £(£) are ̂ .-reciprocal polynomials of the first kind: 

f^q
mA"fk-q

 and ** +<- 4V, ^ q = 0, 1 , k. 
Then h2k-i = ^hk-i ~ ®> anc* ̂ (^) i-s a n ^--reciprocal polynomial of the second 
kind: 

Kk-l+q^^Kk-l-q' 1 -° » X> •••• 2 f e" !' 

S(t) 

4k-1 J 

= X t J 'E ( i + 1)[i + ls '̂ - i ]-
4k-1 J 

J » 0 i = 0 

Thus9 for q = 09 19 . .., 2k - 19 we find9 after some simplification 

s 

h2k-l-q = S ( 2 ^ " ̂  " 2i>[2^ " 4 - *» i ^ 
£ = Q 

where 
s = (2k - <? - 2)/2 for even 4 and (2k -.4 - l)/2 for odd q. 

On the other hand9 
2k 

h2k-l+q = L ( ^ + 2k " i ) [ ^ + 2 f e • " i s i ] 

i = 0 

2k 
= ]£ (? + 2fc - £)[<? + 2k - £, '£]. 

^ = q 
(continued) 
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2k -q 
= X (2k ™ i ) [ l k ~ ts q + i] 

s 
- £ ( 2 f c - ? - 2i)[2k - i , q + i] 

s 

= -Aq^{2k - q - 2i)[2k - q - i9 i]9 

by Lemma l a , bu t t h i s equa l s ~A hxk-i-q* a s d e s i r e d . In p a r t i c u l a r s fo r q = 

0 , we f ind fo2fc-i ~ ""^2fc-i> s o t h a t ^2k - i = ®0 That hhk_± = 0 fo l lows d i r e c t l y 

from t h e d e f i n i t i o n of H(t). 

Lmma 1b: Suppose 0 <. a <_ Ik and 0 £ g £ 2fc„ Suppose / and g s a t i s f y 

9* + * -A<ifk-q
 f o r * = ~k> • • - °> • • - *" Then 

[ a , 3] = - 4 a + 3"2*[2fc - a , 2k - g ] . 

~ ^k-i-q^k + q' -tk + q^k + q' 

^A (fk-q9k-q'~ $k-qfk-q^ 
= -4° + e - 2 * [2 fc - a , 2fe'- g ] , 

ThdOHm 1b°- Suppose F(t) 9 G(t) , and # ( t ) a r e as in Theorem l a , but t h a t fo r 
some 4̂ ^ 0 , 

$k + q = ^ 4 - ? f o r ( ? = -fc, . . . , 0 5 . . . S L 
Then hiik_1 = 0, and H(t) i s an ^ - r e c i p r o c a l polynomial of t h e f i r s t k i n d : ' 

h2k-l+q = ^Kk-l-q f ° r ? = 0 , 1, . . . , 2/C - 1 . 
PJiOOJ: The proof is so similar to that of Theorem la that it is omitted. 

3. GENERATING FUNCTIONS 

Suppose m >_ I and x13h .«., xmS i/ls ...,i/m are (not necessarily distinct) 
indeterminates* Write 

m 

X(t) = n e t - *<) = tm - X^""-1 + ... + (-l)X' 
i-l 

i - 1 

v. y• y • y ••• v 

Then ft (x. - 2/P = X. 
i- 1 .('-SX'-S)-K) 

= Xm(l -- 0l + a2 - ••• + (-DmoJ 
(continued) 
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, xm + xm°2 + ••• + *A-i - U ^ + ... + xmam)s odd m 
(4) 

Jm + Xm02 + ... + Xmam - {Xm01 + ... + Xmom_J, even m. 
The right side of (4) consists of 2ffl terms of the form 

±y. y . .. . zy. x. .. . x . . 

Let P be the set of those terms having positive coefficient (i.e., an even 
number of z/fs) and N the set of those having negative coefficient. In the 
set P U N9 define a mapping 

(f>(zy. iy. . . . y. x. « „ „ x- ) = y. . . . v. x- x* . . . X; . 

If 772 is odd9 (j) is a one-to-one correspondence between P and #;. if 777 Is even3 
cj) defines a one-to-one correspondence between P and P9 and also between N and 
#. For each element z of P U N9 we have s<J>(s) = XmY m» 

At this point9 we Introduce some more notation. Write 

x = ( a ? 1 , - . . . , x m ) , z/ = (z/1, . . . , ym), ^ = (X^QQ , X^o^, . . . , Xmam), 

m 

/7. n ^ * 2/) = E (xi " ^P5 n = 0 9 1 , « « . s 
i = l 

(5) 7 n ( x 5 y) = y [ */„(*» z/) + Un(x9 -2/)] = ^ Y n , 
r e p 

(6) gB(ar, y) = | [ ^ ( x , y) - U ( i , -y ) ] = £ <$*• 
Y e 7\7 

We index the yfs and 6fs in any order, as 

yls Y2S . .., y2k and 619 62S 9S89 62ks 

where 2k = 2m"1
B 

Tfieo/Lein 2: The sequence {wn} defined by 

Un m x? - y? 
u« = ^ = E ^ - r y : ^ * > i; * - o, 1, .-.., 

J- i = 1 ^ J% 

is a 2m-order linear divisibility sequence with generating function 
tH(t) (7) j^y^m. _ i ^ i 

F(t)G(t)s 

where F(t)G(t) is an XmYm-reciprocal polynomial of the first kind9 lying in 
I[A9 t] with degree 2m in t, and H(t) is an XOTIm-reciprocal polynomial of the 
first or second kind9 depending on whether 777 is even or odds lying in I[J, t] 
with degree 2m - 2 in t . 

Pfi00{$°* Equation (5) shows that the sum 

Y£P 

is a binary symmetric function (as in Bocher [1, p„ 255]) of the pairs 

i^is y\)9 ..<><>§ \£Cm?> ym)9 
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namely Xmo0, Xma19 . .., Xm°m9 Since these (ordinary) homogeneous power sums 
sn of the y's thus lie in I [A] , the (ordinary) elementary symmetric functions 
of the yfs also lie in I [A]. The same is true for the elementary symmetric 
functions of the <5's. Therefore, the polynomials 

2k 2k 
(8) F(t) = Hi! - y.t) and G{t) = J\ (1 - 6^) 

i-l 'J-.l 

lie in I[A9 t]. * ' 
Suppose 77? is even. Then .F(t) is an XmYm-reciprocal polynomial of the 

first kind, since each ŷ  is accompanied in F(t) by CKY^) ~ ̂ m^Yt"1* The same 
is true for G(t). On the other hand, if w is odd, then each yi in F(£) equals 
ZmJm())(6t7') = XmYmy^1 for some 6̂- in G(t) , and conversely for each 6̂  in G(t). 
Thus, F(t) and £(£) are related as in Theorem lb. In both cases, even m and 
odd m9 the product F(t)G{t) is therefore an XmYm-reciprocal polynomial of the 
first kind. 

Since {($n{x9 y)} and {Qn(x9 y)} are sequences of power sums, we have 

n=0 n - 0 n = 0 v ' v ; 

and (7) follows. Theorems la and lb now apply to the polynomial 

Hit) = v £ y)[F(t)G'(t) - G(t)F'(t)]9 

and the proof of Theorem 2 is finished. 
In Theorem 2, the coefficients of the polynomials H(t) and F(t)G(t) lie 

in J[u4]; that is, they themselves are polynomials in the indeterminates XmoQ9 
Xmo19 ..., Xmom = Ym. Of special interest is the possibility that these co-
efficients lie, a fortiori9 in the ring 

J* = I[XX, .... Xm, Jj. TJ 

[or a suitable modification of this ring, as in Theorem 2a below; just so that 
the coefficients in question are polynomials in the coefficients of the un-
derlying polynomials X{t) and Y(t)]. If repetition of x^ s and y^s is 
allowed, then all these coefficients can possibly lie in I*. We investigate 
two such cases in the next section: resultant sequences and certain divisors 
of resultant sequences which we call Vandermonde sequences. Under the addi-
tional hypothesis Xm= Ym = 1, we are able to prove another symmetric property 
of H(t) and F{t)G{t)i as functions of (X19 ..., Xm_19 Y19 ..., Ym_1)9 each of 
their coefficients remains unaltered under the substitution 

%i ->xm-i> ¥* + Ym-i> i = I, .-.,rn ~ I. 

k. RESULTANT SEQUENCES AND VANDERMONDE SEQUENCES 

Th(L0K2m l&: Suppose p _> 1, q >_ 1, and p + q >_ 3. Suppose 

Q P xn — y ^ 

(2) un = n n 7T—-^, n = o, i , ..., 
where 

P 
(9) x(t).= n ( ^ - x o = *p- ^i^"1 + x2tp~z - . . . + (-i)pzp, 
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(10) Y(t) = U (t - y.) = tq - Y^-1 + Y2tq~2 - . .. + (-1)*Y 
J = l d 

and 

T* = J[J19 ..., Jp, J19 ..,, j^]. 

Then, {un} is a 2 -order linear divisibility sequence with generating func-
tion 

Gf(t) Fr(t) 
G(t) F(t) 

tE{t) 
F(t)G(t)> 

where 

*i = n n c ^ - y,) 
j'=l i = l 

J 3 ' 

is the resultant of X(t) and Y(t), F(t)G(t) is an XpYq-reciprocal polynomial 

of the first kind5 lying in I*[t] with degree 2pq in t9 and H(t) is an XpYq-

reciprocal polynomial of the first or second kind, depending on whether p is 
even or odd, lying in I*[t] with degree 2pq - 2 in t. 

Vn.00^1 Put w = pq9 ak = xi for ig - q + I <_k <_ iq9 i = 1, ..., p, and 3& = 
Uj for /c = £q + j;,£ = 0, 1, ..., p - 1; j = 1, ..., <?, Then, Theorem 2 ap-
plies, where the pairs (xk9 yk) of Theorem 2 are the pairs (ak, (3k) of the 
present discussion. All that remains to be seen is that the coefficients of 
#(t)and F(t)G(t) lie in J* and that the dependence of H(t) for first or sec-
ond kind reciprocity rests on the parity of p alone. 

For the latter, we refer to the proof of Theorem 2\ Equation (5) shows 
that for even p, each ŷ  occurs in F(t) along with (j)(ŷ ) = XpY^yT1. This makes 

F(t) an XpJ^-reciprocal polynomial of the first kind, and similarly for G(t). 

For odd p, we find F(t) and G(t) related as in Theorem lb, and the argument 
is finished as in the proof of Theorem 2* 

Equation (5) also shows that the sum 

y eP 

is symmetric in x1, . . . , xp and symmetric in y19 . . . , yq9 since Qn(x9 y) 9 where 
Or, y) = (ax, ..., ams gx, ..., @OT)> is a sum of two resultants, each symmet-
ric In x19 ...9xp and symmetric in yl9 ..., yq. Thus, sn is a polynomial in 
the elementary symmetric functions of x1, ..., a?p and of yl9 . .., z/̂ , namely, 
the coefficients Jx, ..., Xp and Jx, ..., Yq. Each sn therefore lies in J*, 
so that the elementary symmetric functions of the y!s also lie in J*. The 
same is true for the elementary symmetric functions of the Sfs. Therefore, 
F(t)9 G(t)s and H(t) all lie in !*[£]. 

Tk2.0H.Qm 3a.: Suppose the generating function 1?(+\Q(+\ i n Theorem 2a is writ-
ten out as 

t(h0 + hxt + ... + hkk_2thk-2) 
(11) , 

w0 + w1t + • • • + whkthk 
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where k ->VR-2 Then t h e c o e f f i c i e n t s hi and Wj,9 r egarded as f u n c t i o n s of 

(12) 

, Yg , where Xn 1, sa t i s fy 

hA\, X P-I> , X,, 1, 1, I, < ? - ! » 

(13) 

h^(l, X15 . . . , I p _ 1 5 1, 1, J 1 , . . 

i = 0S 1 , 

w t d » * p - i > 

^ ( 1 , Xx, . Xp-1> 1' 1 » ^ I ' 

. . , ? ! , 1) 

. . . 4k - 2, 

. , Ix, 1) 

V.i> D» 
0, 1 , . . . , 4k. 

?H£o£- Wri te x = OKJ , . . . , xp) and y = (y13 . . . , z/p)> and c o n s i d e r t h e e f f e c t 
of t h e o p e r a t i o n of r e c i p r o c a t i o n , 

x, , % 1, 2 , and j / ^ . -*- j / T 1 , j = 1, 2 , 

on the sequence {un(x, y)} and its generating function. The series belonging 
to this sequence is transformed into 

(14) r9VP Jp%^[0 + t' + u2(x, y)t" + u(x, y)t'3 + • • • • ] , 

where t' = t/XplF, and we may write its generating function as 

(15) 
t(h' + hit + + h hk-2 thk~2) 

U0' + w{t + r + **k + w'kt 
where the hj and wj are functions of Xn, 9 Xp , -^0 » • • • 5 -i<7 To solve for 
the hi and W/, note that reciprocation transforms the polynomials (9) and (10) 
into 

(-1)* -[Z0 - Jxt + X2t2 + (-l)PJptp] 

and 

Therefore 

(16) 

and 

(17) w! = w. 

(-!)' 
* 1 

• s 

• 5 

t + 

Xo 

V 
xo 
XP' 

**r 
^ 

v 
*< 

v 

+ (-l)qYqtq]. 

5 7 » > = 0,1, 

/ Z p Z p - 1 J 0 J<7 J o \ 

\Xp* Xp Xp
9 Yq ' YqJ 0, 1, 

. , kk 

., hk. 

If we replace t by t r = t/XpY% in (11) and multiply the resulting rational 
^ v P function by ZpJ^9 the series expansion is (14). Thus, (11), as modified, 

equals (15). Since the degrees of the denominators are equal and wr
Q=WQ = 1, 

we equate denominators and we equate numerators. This gives equal coeffi-
cients: hr. - h^ and wl = w^. Equations (16) and (17) now complete the proof 



1980] GENERATING FUNCTIONS OF LINEAR DIVISIBILITY SEQUENCES 201 

of a more general set of equations than we set out to prove. Clearlys for 

these equations reduce to (12) and (13). 

Tfoeo/ieJfl 2b: For p J> 39 suppose 

where 

(9) 

and 

p 

n (* 
i = l 

Un = 
1< 

" *i) 

n 

= t p - zxtp 

a;'.' 

-1 + 

n = 

x2tp 

0 

- 2 

0, 1 

+ ( - 1 ) % , 

I* = I{X1, ' s Xz 

Then {un} is a p! -order linear divisibility sequence with generating function 

where 
Vx\_G{t) 

Vx = 

Fit) _ 
tH(t) 

Fit)Git) 

I ] O ; - Xj), 
1 -̂  i < J -IP 

F(t)G(t) is an Xp "^"-reciprocal polynomial of the first kind, lying in T*[£] 

with degree p! in t, and H(t) is an X^^-reciprocal polynomial of the first 

kind, lying in I*[t] with degree p! - 2 in t. 

PfiOO^'* As is well known, V^ is the Vandermonde determinant: 

,P-i, ,P-i ,p-i 

1 

* ! 

4 

1 
X 2 

^ 

. . . 1 
. . Xp 

x2 

. . Xp = ( - i ) k £ * i l * 2 2 . 7» ^P . . vOp , 

where~{i19 i 2 , ..., ip} = {0, 1, . .., p - 1} = £ and 

(0 if a is an even permutation of 3 
K = < 

( 1 if a is an odd permutation of 3. 

Half of tnese p! summands have ka = 0 and the other half, /ca = 1. If p > 3, 
with k0.= 0 is matched 

P-i. 

then p!/2 is even, and each summand z = x^x^2 . .. 

with a summand X*~1z~1
9 also with ka = 0; if s has /ca = 1, so has Xp M 

The situation is much the same as in the proof of Theorem 2, with one essen-
tial difference. Here, the functions Xpa0, Xpals ..., Xpap, where for each 
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i it is understood that y. is the x- appearing with x^ in the product 

3' 
i<3 

are not symmetric in x , ..,9xp. This is a consequence of the fact that V 
is not symmetric in x±9 . .. 5 xp [unlike the discriminant 7^ of X(t) ]. We may 
proceed by dealing directly with the symmetric quotients 

x7! - x7} 

rather than the asymmetric products J\(x? - xn.) i put 
1* 3 

^n(^) = 2-[W„(̂ ) + Un(-X)] 
and 

9n0*0 = ̂ n t e ) ~ un(-^)]« 

The proof for p > 3 now follows that of Theorems 2 and 2a so closely that we 
omit further details. 

Consider now the case p = 3: for z with ka = 0, we have X^z'1 with &a = 1, 
and conversely. The polynomials 

F(t) = (1 - **a?2£)(l - ̂ t ) ( l - ^ 3 £ ) 
and 

G(£) = (1 - x\x^t)(l - ar^tOQ - x2x\t) 

are not covered by Theorems la and b9 since they are of odd degree. Although 
these theorems can easily be extended to odd-degree polynomials9 we choose to 
defer the case p = 3 to the third example in Section 5, where the generating 
function tH(t) /F(t)G(t) is fully displayed. 

Tk<lOK.Qm 3b: Suppose the generating function tH(t) /F(t)G(t) in Theorem 2b is 
written out as 

t(h0 + h±t + ••• + hk_2tk-2) 

w0 + wxt + ••• + wktk 

where k = p!. Then the coefficients h^ and w^9 regarded as functions of X , 
...9 Xp (where XQ = 1) satisfy 

(12.') 7^(1, Xp_lS ..., Jl9 1) = ^(1, Xl5 ..., Zp.l5 .1), 

i = 0, 1, ...9 k - 2, 
and 
( 1 3 ' ) 1 ^ ( 1 , J p _ l 5 . . . 9 J l 9 1) = ^ ( 1 , J l 5 . . . 9 Z p _ l 9 1 ) , 

i = 0 , 1, . . . , L 
PsiOO^: The proof is so similar to that of Theorem 3a that we omit it here. 

4. REDUCTION OF RECURRENCE ORDER 

The definition of kth-order divisibility sequence in terms of (1) does 
not preclude a given kth-order sequence from being a jth-order sequence for 
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some j < k.. However9 a linear recurrence sequence must be of some least re-
currence order9 and so the following questions arise: 

1. When are the recurrence orders of the sequences of §3, as reported, 
already least possible? 

2. When the recurrence order is reducible to a least value k9 so that 
the generating function tH(£) /'F'(£)G(£) is reducible to a quotient 
th(t)/f(t)g(t) whose denominator is a polynomial of degree k, then 
what symmetric properties remain with this reduced generating func-
tion? 

Clearly, the least recurrence order of a sequence is k if and only if the 
polynomials h(t) and f(t)g(t) have no common linear factor. 

First, we consider the possibilities for common linear factors in case 
all the x^s and y. f s are, as in §3, indeterminates. We can then use this 
information in case some or all of the x^s and y .! s are algebraic integers. 

Vo&&tbJJUjtL<L& jon. induction oj gmeAcuting 
^gyidtlom Xyi Thzotiomk 2, 2a, and 2 b ~ 

1. H(t) has no linear factors in common with F(i)£(t). 
2. F(t) and G(t) have a common linear factor. 
3. F(t) or G(t) has a repeated linear factor. 
4. H(t) has a linear factor in common with F(t)G(t) which is neither a 

common linear factor of F(t) and G(t) nor a repeated linear factor 
of F(t) or G(t). 

For the general sequences of Theorem 2 and the Vandermonde sequences of 
Theorem 2b, the second and third,possibilities clearly do not occur, since we 
are dealing with distinct inteterminates. We conjecture that the fourth pos-
sibility does not occur for these sequences or for the resultant sequences, 
either. 

For the resultant sequences of Theorem 2a, the second possibility still 
cannot occur, for, appealing to a's and 3*s as in the proof of Theorem 2a, 
the linear divisors of F(t) are all of the form 1 - BAt where B. is a product 
of an even number of 3fs, hence has even weight in the z/-indeterminates; on 
the other hand, the linear divisors of G(t) all involve odd weights in the y-
indeterminates. 

However, for resultant sequences, the third possibility does occur. It 
would be difficult to obtain a general classification of occurrences of re-
peated linear factors within F(t) or G(t), but to acquire some knowledge of 
such occurrence, we put p = q = 4 and seek repeated linear factors: as in 
the proof of Theorem 2a, we have 

2/i = Bi = 35 = 39 = 313. 
y2 = B2 = 36 = 3 1 0 = B m 
2/3 = 33 = 37 = 3 n = 315 

yh = 3̂  = 38 = 3 i 2 = 3i 6 

The linear factor 1 - y±y2x\x\x\x\t occurs both as 

and as 

To account for such repetitions, consider the 4 x 4 rectangular array: 

x± 
x2 

X3 

xh 

= <*i 

= a 5 

= a9 

= a13 

= a2 
= a6 

= a10 

= a14 

= a3 
= a7 

= alx 

= ais 

= a, 

= a, 

= a-

= a-

1 - g136a2a3alta5a7 ... a16t 

1 - e ^ a ^ a ^ ... a16t. 
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X, 

x2 

X3 

X ̂  

yi 

i 

5 

9 

13 

y2 

2 

6 

10 

14 

2/3 
3 

7 

11 

15 

yh 

4 

8 

12 

16 

The sub-array involving 1, 29 59 6 corresponds in an obvious way to the equa-
tions BxBg '= 3235 and ô otg = a2ot5°  Any such occurrence of 3^3j = 3^3/, and 
a^a^ = a£a^9 where i $ ls corresponds to a repeated linear factor of F(t) 
with z/-weight 2. The array contains 36 rectangular sub-arrays, each corre-
sponding to a repeated linear factor. A momentfs reflection now indicates 
that there are many more than 36 repeated linear factors of G(t) having y-
weight 39 and so on. Since Ff(t) and F(t) have a common linear factor when-
ever F(t) has a repeated linear factor [or the same for G? (t) and £(t)], and 
since 

E(t) = [F(t)£'(t) - G(t)Ff(t)]/RlS 

we conclude that the order of recurrence 2pq reported in Theorem 2a can be 
reduced considerably* 

Since H(t) and F(t)G(t) are P-reciprocal polynomials for some Ps each 
linear factor 1 - rt of H(t) occurs with 1 - Pr"1t9 and the same pairing oc-
curs in P(t)£(t). For the remainder of this section, we restrict our atten-
tion to all the sequences considered in §3 except the Vandermonde sequence in 
the special case p = 3 . Therefore9 in the cases under consideration not only 
the degree of the denominators but also that of the numerators of each gen-
erating function9 before any possible reductions, is an even positive integer. 
Accordinglys in the case 1 - rt = 1 - Pr~xt? this factor occurs an even number 
of times. This remains true in the cases under consideration if any number 
of the symbols x1$ ...,• y19 ... represent algebraic integers rather than in-
determinates. We summarize and extend these considerations in the following 
two theorems. 

JhojOtim 4 OH For the sequences {un} of Theorem 29 Theorem 2a9 and Theorem 2b 
(except for p = 3) , wherein any number of the x^*s and y^s may be algebraic 
integers, the least recurrence order k is an even positive integer. The gen-
erating function th(t)/f'(t)g(t), where H(t) and F(t)G(t) are P-reciprocal 
polynomialss reduces9 by cancellation of common linear factors9 to a rational 
function th(t)/f(t)g(t), where h(t)\H(t), f(t)|F(t), and g(t)\G(t). Moreover, 
f(t)g(t) is a P-reciprocal polynomial with degree k in t, and h(t) is a P-
reciprocal polynomial with degree k - 2 in t. The coefficients of these two 
polynomials lie in I[^A] for the general sequences of Theorem 2, and in J* for 
the resultant and Vandermonde sequences of Theorems 2a and 2b. 

VKOOfc All these claims follow easily from the cited theorems, together with 
the fact that each linear factor 1 - rt of H(t) cancels along with another 
factor9 1 - Pr~1t. After all such pairs cancels the remaining linear factors 
of h(t) and of f(t)g(t) still occur in pairs of the form 1 - rt, 1 - Pr~1ts 

so that we still have P-reciprocal polynomials. 

Thzonoyn 4b°> The symmetry property for coefficients indicated by (12) s (13) 9 
(12f)s and (13f) hold for the coefficients of the reduced polynomials h(t) 
and f(t)g(t) of Theorem 4a.• 
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Vttooj* The proof is so similar to that of Theorem 3a that we omit it here. 

5'. EXAMPLES 

Example 1; First, we write out the polynomials F(t) 9 G(t), and H(t) which 
appear in the generating function of the resultant sequence obtained from 

X(t) = (t - x±)(t - x2)(t - x3) = t3 - at2 + bt - o and Y(t) = t - d: 

F(t) = 1 « (s + ad2)t + d2(ae + bd2)t2 - c<i4(& + d2)£3 + o2d6t\ 

G{t) = 1 - d{b + d2)t + d2(ac + M 2 ) t 2 - ^ ( c + ad2)t3 + c2d6t\ 

#(£) = 1 - d2(ao + 3cd + M 2 ) t 2 + 2cd3(c + bd + ad2 + d3)t3 

- cd5(a<? + 3cd + bd2)th + o3dHs. 

In accord with Theorems 2a and 3a, H(t) is a cd3-reciprocal polynomial 
of the first kind, and a and b are interchangeable within each of the coeffi-
cients in case c-d~\. Similar observations hold for the product F(t)G(t)» 

If o = d= 1 and a = bs then the resultant R = o + ad2 - {bd + d3) of X(t) 
and Y(t) vanishes, and F(t) = G(t) has the root 1 in common with H(t) . In this 
case, the expression 

(*« - ln)(x" - l")(ln - ln) 

~~Jx~- l)(a?2 - 1)(1 - 1) 

formally equals 

(xl - l)(x% - 1) 

H (X-t - 1)(X2 - 1) 

which generates a sequence of recurrence order less than 8. Nevertheless, 
this sequence is formally generated by tH(t) /'F(t)G(t). 

Putting -a = Z> = £ = d=l, we obtain an 8th-»order divisibility sequences 

0, 1, 2, 1, 8, 11, 14, 34, 64, 109, 242, eaa . 

Example. 2'« Here we examine a divisor of a resultant sequence. Suppose 

F(t) = (t - ̂ x)(t - x2) = t2 ~ at ~ b 
and 

£(£) ••= (t - z/^Ct - z/2) = t2 - ct - d. 
Let 

4 n = (-l)n(2?w + dn) and A2 = (a2 + 42?) (a2 + 4d) , 
and let _ 

Ln = xl + x», £„ = z/« + z/» 

Each of the latter four expressions is a polynomial in a and £ or c? and d* 
The polynomials Ln = Ln(a,b) and Tj^c^d) are often called Lucas polynomials, 
and the polynomials Fn = Fn(asb) and Fn = Fn(c9d) are the Fibonacci polyno-
mials mentioned In §1. 

The resultant Rn(Fs G) of the polynomials Fn(t) = (t - x*) (t - x*) and 
Gn(t) = it - y")(t - y2) can be written as 
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Rn{a, b, c, d) = ~{LnLn - 2An + /\FnFn)(LnLn - 2An - hFnFn), 

s i n c e 
LnLn - 2An + txFnFn = -2(arJ - yn

2) (x» - y\) 
and _ _ 

K^n ~ 24n " WnFn = "2(^1 " J/J)^" " J/J). 

Thus, if (a2 + Ab)(c2 + 4<i) is a perfect square, the sequence with nth term 

L1L1 - 2A± + AF1F1 

is a divisor of the resultant sequence 

{un} = {Rn/R1}. 

Writing D = x1y1 + x y s we find that the quotient 

(18) , 1 - bdt2 ' 

1 + (b + d - D)t + (2bd - bD - dD)t2 + bd(b + d - D)t3 + b2d2th 

is a generating function for the sequence {vn}. 
If we put D - x 9 - b - d = y 9 and - M = s9 then the sequence {vn} is the 

same as the sequence {ln(xy y9 z)} discussed in detail in [4]. This is a 4th-
order divisibility sequence (for which 4 is the least possible order)9 and as 
a polynomial in x9 we find for n 2. 2 the following factorization in terms of 
linear factors: 

n-l 
ln(x, 2a9 - a 2 - 32) = 11 (^ - 2a cos 2Jcn/n - 23 s i n 2/cir/n) . 

fc = o 
It seems likely that every 4th-order divisibility sequence with u0 = 0 and 
u1 = 1 is generated by (18) for some choice of bs d, and D. We point out that 
3rd-order divisibility sequences are characterized in Hall [3]. 

ExampZ,d 3: Here we examine a Vandermonde sequence. Let 

X(t) = (t - a)(t - 3)(t - Y) = t3 - 4t2 + Bt - C. 

The Vandermonde sequence whose nth term is 

(19) — g- • *- - -^ *-, n = 0, 1, ..., 
v a - 3 a - Y 3 - Y 
has a g e n e r a t i n g f u n c t i o n 

t [ l + 2Cfr + g(3C7 - AB)t2 ,+ 2c73t3 + CH1*] 

1+ ( 3 C - 4 B ) £ + [S 3 + L?a 3 ~ 5 ^ S + 6 0 ] t 2 + 6 ' [ 5 ( 2 5 2 - A 2 5 ) + L?(76 r +2 i 3 - 6AB)]t3 

+ C2[B3 + C(A3 - 5AB+ 6C)]th + Ch (3C~AB)t5 + C6t6 

The f i r s t s i x terms a r e as f o l l o w s : 
u0 = 0, ux = 1, u2 = AB - C, u3 = A2B2 - £ 3 - CA3 

uh = C3 + 243C2 - 5,4BL?2 + 2B3C + 3^2S2C - 2Alf£C + A3B3 - 2A54 

u 5 = -Ch + A3t73 + 8ABC3 + B3C2 + A ^ C 2 - 15,42B2C2 - 3A2B5 - 3A5B2C 
+ ABhC + 8A3S3C + ASC2 + ^ S 4 + S 6 . 
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For C = 1, note that all the terms of the sequence are symmetric in A and B9 
in accord with Theorem 3b. 

As a special case, put A3 = x, B = Q9 and C = (7. The generating func-
tion is then 

t(C2t2 + Ct + I)2 

(C2t2 + Ct + l)3 + Ca?(C£ + l)2t2 

and it is easily seen that the numerator and denominator have a common root 
if and only if x = 09 in which case the sequence degenerates to a Fibonacci 
sequence. Thus9 except for x = 0, this Vandermonde sequence is of recurrence 
order 6 and not of any lesser order. 

For A3=x9B = 0$C=ls the first nine terms are? 

uQ = 0, u1 = ls u2 = -1, u3 = -a;, u^ = 2x + 1, u5 = x2 + # - 19 

u6 = -3#2 - &r9 w7 = -x3 - x2 + 9x + 1, u8 = 4x3 + 18#2 + 6a: - 1. 

It is not difficult to prove that the nth term 

un = un(x) 
of this sequence factors as follows! 

un(x) = ( _ i ) n + 1 H [ - t o C o s 2 Zrrr/n - (4 cos 2 4TTM - l ) 3 ] . 
fc = i 

We conjecture that un(x) is irreducible in J[#] if and only if n is a prime 
positive integer. 

Finally, we list some terms of the numerical 6th-order divisibility se-
quence {un(-l)} and remark that 

\un(-l) | <_ Fn (= the nth Fibonacci number), 

for 1 <. n £ 100 and perhaps for all positive integers n. 

0, 1, -1, 1, -1,-1, 5, -8, 7, 1, -19, 43, -55, 27, 64, -211, 343, -307, -85, 911, 

u2Q = -1919 = -19 • 101, u22 = -989 = -43 • 23 

u2S = -3151 = -23 • 137, w25 = -15049 = -101 • 149 

u27 = 5671 =53 • 107, u5h = -989617855 = 174505u2?. 
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LOCAL PERMUTATION POLYNOMIALS IN THREE VARIABLES OVER Zp 

GARY L. MULLEN 
The Pennsylvania State University, Sharon, PA 16146 

1. INTRODUCTION 

If p is a prime, let Zp denote the integers modulo p and Z* the set of 
nonzero elements of Zp. It is well known that every function from Zp x Zp x Zp 
into Zp can be represented as a polynomial of degree < p in each variable. 
We say that a polynomial f(x19 x29 x3) with coefficients in Zp is a local 
permutation polynomial in three variables over Zp if f(x19a9 b) 9 f{c9x29 d) , 
and f(e9f9 x$) are permutations in x±9 x2, and x3, respectively, for all a, 
b9 c9 d9 e 9 f e Zp. A general theory of local permutation polynomials in n 
variables will be discussed In a subsequent paper. 

In an earlier paper [2], we considered polynomials in two variables over 
Zp and found necessary and sufficient conditions on the coefficients of a 
polynomial in order that it represents a local permutation polynomial in two 
variables over Zp. The number of Latin squares of order p wds thus equal to 
the number of sets of coefficients satisfying the conditions given in [2]. 
In this paper, we consider polynomials in three variables over Zp and again 
determine necessary and sufficient conditions on the coefficients of a poly-
nomial in order that it represents a local permutation polynomial in three 
variables over Zp. 

As in [1], a Latin cube of order n is defined as an n x n x n cube con-
sisting of n rows, n columns, and n levels in which the numbers 0, 1, ..., 
n - 1 are entered so that each number occurs exactly once in each row, col-
umn, and level. Clearly the number of Latin cubes of order p equals the num-
ber of local permutation polynomials in three variables over Zp. We say that 
a Latin cube is reduced if row one, column one, and level one are in the form 
0, 1, ..., n - 1. The number of reduced Latin cubes of order p will equal 
the number of sets of coefficients satisfying the set of conditions given in 
Section 2. 

In Section 3, we use our theory to show that there is only one reduced 
local permutation polynomial in three variables over Z3 and, thus, there is 
precisely one reduced Latin cube of order three. 

2. A NECESSARY AND SUFFICIENT CONDITION 

Clearly, the only local permutation polynomials in three variables over 
Zp are x1 + x2 + x3 and x1 + x2 .+ x3 +.1, so that we may assume p to be an 
odd prime. We will make use of the following well-known formula: 


