This is in set A_2 , because T_{3n+3} is in A_1 . Thus, since $(T_{3n+4} + T_{3n+3})$ and $(T_{3n+5} - T_{3n+3})$ are both in A_2 , $T_{3n+5} + T_{3n+4}$ has a representation as the sum of two elements from set A_2 .

Next, consider

$$\begin{split} & T_{3n+4} + T_{3n+3} - (T_{3n+1} + T_{3n}) \\ & = T_{3n+4} + T_{3n+3} + T_{3n+2} - (T_{3n+2} + T_{3n+1} + T_{3n}) \\ & = T_{3n+5} - T_{3n+3}, \end{split}$$

which we have seen to lie in A_2 , so that

 $(T_{3n+5} - T_{3n+3}) + (T_{3n+1} + T_{3n}) = T_{3n+4} + T_{3n+3}$

is the sum of two integers from A_2 , since both are in A_2 . This completes the proof.

If $n \neq T_m$ or $n \neq T_s + T_{s+1}$, then *n* has a representation as the sum of two elements from the same set. If $n = T_s + T_{s+1}$, then if $n = T_{3m+1} + T_{3m+2}$, both T_{3m+1} and T_{3m+2} appear in A_1 , and *n* has a representation as the sum of two elements from A_1 . If $n = T_{3m+2} + T_{3m+3}$ or $n = T_{3m} + T_{3m+1}$, then each has a sum of two elements from A_2 .

REFERENCES

- 1. K. Alladi, P. Erdös, and V. E. Hoggatt, Jr. "On Additive Partitions of Integers." *Discrete Mathematics* 22 (1978):201-211.
- 2. Robert E. F. Higgins. "Additive Partitions of the Positive Integers." Unpublished Master's thesis, San Jose State University, August 1978.
- 3. V. E. Hoggatt, Jr. "Additive Partitions I." The Fibonacci Quarterly 15, No. 2 (1977):166.
- 4. V. E. Hoggatt, Jr. "Additive Partitions II." The Fibonacci Quarterly 15, No. 2 (1977):182.
- 5. Richard Sarsfield, private communication.
- 6. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton-Mifflin Publishing Company, 1969. Theorem VII, p. 76.
- 7. R. Evans. "On Additive Partitions of Alladi, Erdös, and Hoggatt." To appear.

THE NUMBER OF MORE OR LESS "REGULAR" PERMUTATIONS

G. KREWERAS

Institut de Statistique, Paris, France

Let us call S_{m+1} the set of all permutations of the integers $\{1, 2, \ldots, m+1\}$. Any permutation α from S_{m+1} may be decomposed into b blocks B_1, B_2, \ldots, B_b defined by the following property: each block consists of integers increasing unit by unit, and no longer block has the same property.

Example: m = 8, $\alpha = 314562897$; there are b = 6 blocks:

 $B_1 = 3$, $B_2 = 1$, $B_3 = 456$, $B_4 = 2$, $B_5 = 89$, $B_6 = 7$.

The lengths of the blocks form a b-composition q of m + 1 (see [1]); in the above example, q = (1, 1, 3, 1, 2, 1).

226

1980] THE NUMBER OF MORE OR LESS ''REGULAR'' PERMUTATIONS

If $\alpha(i)$ is the *i*th integer in α , $\alpha(i)$ and $\alpha(i + 1)$ belong to the same block iff $\alpha(i + 1) = \alpha(i) + 1$; let us call the number of *i*'s satisfying this condition the <u>regularity</u> *r* of α . Obviously b + r = m + 1, so that *b* and *r* are equivalent descriptive parameters of α . The greatest possible regularity is r = m; it occurs iff α is the identical permutation. The smallest possible regularity is r = 0; it occurs iff q = (1, 1, 1, ..., 1); we shall call the corresponding permutations "irregular permutations," and look for their number. More generally, we shall call U(m, r) the subset of S_{m+1} consisting of the permutations of regularity *r*, and u(m, r) the cardinality of U(m, r). We know already that u(m, m) = 1 and that

(1)
$$\sum_{r=0}^{m} u(m, r) = (m+1)!$$

Setting u(m, 0) = u, we shall first show that

(2)
$$u(m, r) = \binom{m}{r} u_{m-r}.$$

Let us start from a permutation α of regularity p, i.e., of b = m - p + 1blocks. Besides their order of appearance in α , there is an "order of increasing values" of the blocks; in that order, the smallest block in the above example is 1 (= B_2), then comes 2 (= B_4), then 3 (= B_1), then 456 (= B_3), then 7 (= B_6), and finally, 89 (= B_5). If we relabel the blocks according to their place in the latter order, and if we list them by order of appearance in α , we obtain a permutation p of {1, 2, ..., b}; in the above example, p = (314265).

Necessarily, this permutation p is an irregular one, since, if it had two consecutive integers at two consecutive places, it would mean that the corresponding blocks in α could be merged into a single block, which is contradictory with the definition of the "blocks."

Let us start now from the pair (p, q), where p is any irregular permutation of $\{1, 2, \ldots, m-r+1\}$ and q is any (m-r+1)-composition of m+1:

$$p = (p_1, p_2, \dots, p_b),$$

$$q = (q_1, q_2, \dots, q_b).$$

If $p_i = p(i) = 1$, transform p by replacing p_i by a block $(123 \dots q_i)$; if p(j) = 2, replace p_j by a block $(q_i + 1, q_i + 2, \dots, q_i + q_j)$, and so on, until p is finally transformed into a permutation α of $\{1, 2, \dots, m+1\}$.

This procedure defines in fact a (1-1)-correspondence between the set U(m, r) and the set of pairs (p, q) consisting of an irregular permutation p of $\{1, 2, \ldots, m-r+1\}$ and a (m-r+1)-composition q of m+1. Since it is well known that the number of u-compositions of v is $\binom{v-1}{u-1}$, we can conclude that

$$u(m, r) = u_{m-r} \begin{pmatrix} m \\ m \end{pmatrix},$$

which proves (2).

Inverting (1) after replacement of u(m, r) by its expression (2), we obtain

$$u = \sum_{r=0}^{m} (-1)^{r} {m \choose r} (m + 1 - r)!,$$

which may be written

$$(3) u_m = \Delta^m 1!.$$

This enables us to calculate u_m for moderate values of m:

m = 0	0 1	2	3	4	5	6	
$u_m = 1$	L 1	3	11	53	309	2119	

For larger values of *m*, it is convenient to use recursion formulas with positive terms only, which will be connected with a closer investigation of irregular permutations.

If we start from one of the u_m permutations belonging to U(m, 0), say α , and if we delete m+1 in α , the remaining permutation β of $\{1, 2, \ldots, m\}$ may be irregular or not, and, in fact, will be of regularity either 0 or 1. Conversely, the whole set U(m, 0) can be reconstructed by the reinsertion of integer m+1 either at some suitable place of an irregular permutation β or at the only suitable place of a permutation β of regularity 1.

If β is irregular, there are m + 1 conceivable places for insertion of integer m + 1, but one and only one of them, namely the place immediately after integer m, is not suitable. The number of corresponding possibilities is thus mu_{m-1} .

If β is of regularity 1, the number of possibilities for β is given by formula (2), substituting m - 1 for m and 1 for r, which yields $(m-1)u_{m-2}$; integer m + 1 must then be inserted between the only two consecutive integers of β .

Finally,

(4)

$$u_m = m u_{m-1} + (m - 1) u_{m-2},$$

which provides an easier calculation of the sequence.

A numerical table of u(m, r) is readily formed from the knowledge of u_m and formula (2):

		r	=	0]	L	2	3	4	
<i>m</i> =	• 0			1						
	1			1]	L				
	2			3	2	2	1			
	3			11	9	9	3	1		
	4			55	44	Ύŧ	18	4	1	

The following properties are easy to verify:

(1°) Column r = 1 consists of the "rencontres" numbers (see [2]). The numbers of columns 0 and 1 appear in [3], but without reference to their enumerative meaning.

(2°) The Blissard generating function [2] of column 0,

$$y(x) = \sum_{m=0}^{+\infty} u_m \frac{x^m}{m!},$$

satisfies the differential equation

$$y'(1-x) = y(1+x),$$

since (4) may be written

 $u_{m+1} - mu_m = u_m + mu_{m-1}.$

Elementary integration yields

 $y = y_0 = e^{-x}(1 - x)^{-2}$.

(3°) The Blissard generating function y_r of column r is given by use of (2):

$$\sum_{m} \binom{m}{2^{2}} u_{m-2} \frac{x^{m}}{m!} = \frac{x^{2}}{2^{2}!} \sum_{m} u_{m-2} \frac{x^{m-2}}{(m-2^{2})!},$$

so that

$$y_r = e^{-x}(1 - x)^{-2}x^r/r!.$$

(4°) The sum $\sum_{r=0}^{+\infty} y_r$ is $(1-x)^{-2} = 1 + 2x + 3x^2 + \cdots$, which confirms that the

coefficient of $x^m/m!$ is (m + 1)!.

(5°) According to (3), the ratio $u_m/(m + 1)!$ is equal to

$$1 - {\binom{m}{1}} \frac{1}{m+1} + {\binom{m}{2}} \frac{1}{(m+1)m} - \dots + (-1)^r {\binom{m}{r}} \frac{1}{(m+1)_r} + \dots$$

As *m* increases, with fixed *p*, the general term of this sum tends toward $(-1)^{r}/r!$; it follows that the sum itself tends toward e^{-1} , which is the limiting proportion of irregular permutations.

(6°) Using (2), it appears that

$$\frac{u(m, r)}{(m+1)!} = \frac{u_{m-r}}{(m-r+1)!} \cdot \frac{m-r+1}{r!(m+1)}.$$

As *m* increases, the second member tends toward $e^{-1}/r!$. The latter result means that, if a permutation is chosen at random in S_{m+1} and if *m* increases, the limiting probability distribution of its regularity is a Poisson distribution with mean 1.

REFERENCES

- 1. L. Comtet. Analyse Combinatoire. Paris: P.U.F., 1970. I:132.
- J. Riordan. An Introduction to Combinatorial Analysis, pp. 65 and 19-20. New York, 1958.
- 3. M. Rumney & E.J. F. Primrose. The Mathematical Gazette 52 (1968):381.

STAR POLYGONS, PASCAL'S TRIANGLE, AND FIBONACCI NUMBERS

AARON B. BUDGOR

Lawrence Livermore Laboratory, U.C., Livermore, CA 94550

In recent years, there has been some flurry of excitement over the relationship between the complexity of a graph, i.e., the number of distinct spanning trees in a graph, and the Fibonacci and Lucas numbers [1, 2]. In this note, I shall demonstrate a relationship, although incomplete, between the Fibonacci numbers and the star polygons. My hope is to spur further research into the connection between nonplanar graphs and their enumeration from number theory.