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If j = 2 in (C6) , we obtain 

(3.7) a2
001 + a2

011 + aQQ1aQ11 = 1. 

Using (3.6) and (3.7) along with the fact that a001 = 1, we see that #01 1 = 0. 

Since all the variables in (C7) have already been uniquely determined, 
we proceed to (C8), where we obtain 

c2 - ~2 

and 
(3.9) a 2 , + 2 + a a = i, 

(3.8) a2
0Q1 + a101 + 2a001a101 = 1 

(3.10) a2
010 + a^10 + 2a010a110 = 1 

*10 1 ^001^101 

so that a101 = 0. 
From (C10), we obtain 

and 
(3.11) a2

010 + allQ + a010a110 = 1, 

so that a110 - 0. 
From (C12) , we obtain, after simplification, 

(3.12) al±1 + 2allx = 0 
and 
(3.13) a2

11 + a1±1 = 0, 

so that a111 = 0. 
We have now uniquely determined all 27 coefficients in (3.1). Thus, 

J 1^1) *&2. 9 *^3' = *̂ 1 *̂ 2 ^3 

is the only reduced local permutation polynomial in three variables over Z3 

and, hence, there is precisely one reduced Latin cube of order three. If we 
list the cube in terms of the three Latin squares of order three which form 
its different levels, we can list the only reduced Latin cube of order three 
as 

012 120 201 
120 201 012 
201 012 120. 
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In this paper, we wish to derive some combinatorial identities (partly 
known, partly apparently new) by combining well-known recurrence relations 
with known forms for characteristic polynomials of paths and cycles (i.e., 
of their adjacency matrices). We also obtain some extensions of known re-
sults. 
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Define PQ = 1, P± = x. For n > 1, define 

(1) Pn = Pn(x) = x P ^ - P, n - 2 • 

This recurrence relation has been investigated by Liebestruth [5] (see also 
[2, v. I, p. 402]). The formula for Pn is given as 

(2) Pn -£<-!>*(";;*)*"- 2fe 

for every nonnegative integer n. 
The following Fibonacci polynomial is treated in [8]. 

F0(x) = 05 F1(x) = 1, Pn (x) = xFn_1{x) + Fn_2(x) 

(see also [4]). The polynomial Pn is hence essentially a Fibonacci polyno-
mial. As such (2) appears as a problem in [7]. The connection between the 
polynomial Pn and Fn is easily seen to be 

(3) Pn(x) = inFn + 1(-ix)s 

where i is the imaginary unit. 
By postulating P_1 = 09 and in general 

W P-n = -Pn-2 
for all positive integers ns Pn turns out to be a polynomial for every in-
teger n. It is easy to check that both (1) and (4) are valid for all inte-
gral n. 

Using (1) and the induction principle s we can show thats for n J> 05 we 
have 

< 5 > *n~Y,(n~k
1)Pn-2k-

Let t be any positive integer. Writing x = P1, (1) may be written as 

(6) P1Pt =Pt + 1 +Pt-1. 

Now let t be any positive integer >_ 2. It is easily checked that 

(7) P2Pt = Pt + 2 + Pt +Pt-2-
We shall now show that (6) and (7) are special cases of the general formula 
expressed by 

ThzoK-QM 7 •* For any nonnegative integers s and t we have 
s 

s Ft = Z»J t + s - 2k ' 
k = 0 

We first prove Theorem 1 for the case 0 <. s <. t . For s = 05 1, 2, the 
theorem is already established. Let it hold for all 0 <_ s' < s and for all 
t >. sr. Consider s, t such that 2 < s <_ t . Using (1) 3 we have 

PsFt - (xPs _ i. - Ps _2)Ft = xPs_1Pt - Ps _ 2Pt 

s - 1 s-2 

X2mJPS + t-l-2k " Z-# Ps+t-2-2k 
k=0 k = 0 

2_~r ° ~ o - z s 
2mJ

Ps + t-2k + 2^ ^s+t-2-2k " 2^j ^s + t-2-2k ~ / J ^s + t 
k=0 k=0 k=0 k=0 
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This proves the theorem for 0 <_ s <^ t , 
The right-hand side of Theorem 1 appears at first sight not to be sym-

metric with respect to s and t . We show it to be symmetric. We first prove 
the simple 

Lmma 1: n 
EPn-2k = 0. 
k = l 

VKOO^* Take the terms in pairs symmetric with respect to their positions in 
the series. We then have 

[n/2] 

Lmj~Pn-2k~ 2-rf (Pn-2j + ? ( n - 2 j ) - 2 ^ = °' 

which proves the lemma. 
Now let s > t . Put n = s - t and apply Lemma 1. Then 

k = l 

Equality (8) together with that part of Theorem 1 already proved yield 

t t s -t 

^s^t = 2 s ^ s + t-2k = 2^^s + t-2k + / A Ps -t-2k 
k = 0 k = 0 k = l 

t s s 
= 2-d Ps + t-2k + 2-J Ps-t-2(k-t) = L^t Ps+ t -2k ' 

k=0 k-t+1 k=0 

which proves the theorem for all nonnegative integers s and t. 
The following are some special cases of Theorem 1. 

<9> Pn=T,P2k> 
k = 0 

n 

(1Q) PnPn+l = L P 2 f c + l -k = 0 

Both (9) and (10) appear in [2, p. 403]. 
We now have 

ThdOKom 2: Let m and n be arbitrary integers. Then 

P2 - P P = P2 . 
n n~ m n + m m -1 

V/toofi: CO££ 7. 0 <_ 7?? £ n. By us ing Theorem 1 for s = n - m, t = n + m, we 
ge t 

^ ^ Pn-mPn + m 2^P2(n-k) Z^ P2k ' 
k = 0 k = m 

Putting m = 0 in (11) yields (9). Subtracting (11) from (9) yields 
m-l 

P2 - P P = V"* P 
n ^n-m n + m L-d 2k' 

k = m 
Using (9) again we obtain Theorem 2. This settles Case 1. 



1980] SOME COMBINATORIAL IDENTITIES 21? 

C&6£ 2. 0 <_ n < m. 

SubctUZ 2.1.—n + 1 > m - 1. S ince n + 1 <. m, i t fo l lows t h a t m - 1 = 
n . Then n - 7?7 = - 1 , and t h e theorem h o l d s . 

Subc<U& 2.2,—n + 1 <. 77? - 1. Then, u s i n g ( 4 ) , we may w r i t e 
p2 + p p - p 2 _ p p 

= p2 - p p - pi-
rn-1 m - l - ( n + l ) 7 w - l + ( n + l ) n * 

The last equality follows by applying Case 1 to n + 1 and m - 1. This com-
pletes Case 2. 

The remaining cases are settled by applying similar arguments. 

CoKollaAy 7: For all integral n9 we have 

P2 - P P =1 
rn rn-lrn+l L ° 

VK.00JI Put 777 = 1 in Theorem 2. 
W r i t i n g (1) aga in we have xPn = Pn + 1 + Pn-1> Thens 

X Pn = X {Pn + 1 + Pn _ x) = ^n + 2 -+ 2P„ + Pn _ 2 . 

By induction, it is easy to show that for all positive integers r we have 

xvP„ 
Then, 

P.P* •?0
(-1)'(%<7)a:"2'Pt 

q=Q V ^ ' ! 7< = 0 X / 

(12) 
_ \^ / i\q (s - q\ \ ^ Is - 2q\T 

t + s-2(q+k) 

Now let q + k = m be constant. Equating corresponding terms of Theorem 1 
and (12) we obtain, after replacing s by n, 

Tfi£0/L£J7l 3' Let 777, n be nonnegative integers such that m ^ n. Then, 

min (777, n - m) 

t <-»t;k)(r-?) = '-k = Q 

CofioZZa/iy 2: For any nonnega t ive i n t e g e r n 9 we have 

j£o fc!((n - k ) ! ) 2 

P^LOO£: Put n = 277? in Theorem 3 and replace 777 by n. 
For nonnegative n, the polynomial Pn(x) is known to be the characteris-

tic polynomial of a simple path of length n (number of vertices in the path) 
[l,.p. 75]. 

Let Cn (x) be the characteristic polynomial of an n-cycle. In [6, p. 
159], the following close relationship between Cn(x) and Pn(x) is given 
for n _> 3: 
(13> Cn = C„(X) = Pn - PM.2 - 2. 

Using (4), we may write (13) as 
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(14) Cn = Pn + P_n - 2. 

In a regular graph G, the order of regularity v is an eigenvalue of G. 
Therefore, we have Gn(2) = 0. Using (13), we obtain 

(15) Pn(2) = Pn_2(2) + 2 

for n > 3. Since PQ(2) = 1, P1(2) = 2, P2(2) = 3, it follows that for n > 0 
we have 

(16) Pn(2) = n + 1. 

This is a result in [3, 1.72]. 
Using (14), it is easily checked that both (15) and (16) are valid for 

all integral n. 
Using the known expression for Pn, [6], we obtain 

Fn = £( - !>*(" I k)*n'2k =.fl (̂  - 2 cos(TTj/(n + 1 ) ) ) 
(17) 

[n/2] 
= ar* f l Or2 - 4 cos2(TTj/(n + 1 ) ) ) , 

J - l 

where h = n - 2[n/2], [ 8 ] . 
For positive n, (16) and (17) together imply 

n 
(18) 2 n n (1 - cos(TTj7(n + 1 ) ) ) = n + 1. 

j = i 

Taking the factors of the left-hand side in pairs, we get 

IkdOKOM 4: Let n be an integer > 1. Then, 

[n/2] , 
f l sin(TT^/(n + 1)) = (n + 1)* 2 ~ n / 2 . 

fc = i 

Theorem 4 and the left-hand side of (17) together yield 

(19) fl sin2(^/(r/. + 1)) = (n + 1)2"2 = £ ( - { ) (" fc )• 

Put x - 0 in (17) and let n be even and positive. 
Put n = 2m. We then have 

m 
Pn(0) = (-l)m = (-l)m2nJJ cos2 (vk/(n + 1)), 

fe-1 

yielding 
m 

IkdOKm 5: J] cos(nk/(2m + 1)) = 2~m. 
fc-r 

Now put x = 2i. It then follows from (1.7) that 

2 V £ 4 " * ( " * *) = 2"ri (* - cos(Trj7(« + 1))). 

Again taking the factors in pairs and cancelling out, we get 
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/ V\ [n/2] 

<20> Z l 5 r r = 11 (1 + cos2(7Tj7(n + 1 ) ) ) . 

By s e t t i n g re = i i n (17) , we ge t 

p n W = ^ Z ( n ^ ) = ft ^ " 2 cos(Trj/(n + 1 ) ) ) . 

Taking t h e f a c t o r s i n p a i r s y i e l d s 

(21) X ( n
 fe ) = f l (1 + 4 cos2(TTj7(n + 1 ) ) ) . 

Using (3)5 it follows that 

(22) Pn (i) = {BFH11(1) = £*/ lS 

where fn is the nth term of the Fibonacci sequence 

/„ = o , fx = i, f2 = i, /„ =/„., +fn_2. 
Combining (21) and (22), we get 

[n/2] 
(23) / = f l (1 + 4 cos2(7Tj/(n + 1 ) ) ) . 

J = I 

Theorem 1 and (22) together yield, for s <_ t, 

fe = o 

A considerable number of identities and results on Fibonacci numbers may be 
derived from repeatedly using (24). 

Let (?)„ be the J-graph mentioned in [6, p. 162] and let Yn = Yn(x) be 
its characteristic polynomial. It follows from [6] that 

(25) In =x(Pn_x - Pn_3) «P„ - P„_„. 

We then have 

Yn (2) = PB<2) - P „ . „ ( 2 ) = 4 . 
Using t h e e x p r e s s i o n for Yn in [ 6 ] , we ge t 

n - l 
(26) Y„ = xfl(x - 2 COS(TT(2J - l ) / 2 ( n - 1 ) ) ) . 

J - I 

Combining (25) and (26), we get, after setting x = 2, 

t(n-l)/2] 
2 n I I (1 ~ COS 2 (TT(2J - l ) / 2 ( n - 1 ) ) ) = 4 . 

W r i t i n g n i n s t e a d of n - 1, we get 

[n/2] 
I I (1 - COS 2 (TT(2J - l ) / 2 n ) ) = 2 1 " * , 

J = I 
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and f i n a l l y , 
[n/2] 

(27) n sin(TT(2j - l ) / 2 n ) = 2 " i ( n " l } . 
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ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS 
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1. INTRODUCTION 

In July 19763 David L. Silverman (now deceased) discovered the follow-
ing theorem. 

Tho.OH.2m 1' There exist sets A and B whose disjoint union is the set of 
positive integers so that no two distinct elements of either set have a Fi-
bonacci number for their sum. Such a partition of the positive integers is 
unique. 

Detailed studies by Alladi, Erdos, and Hoggatt [1] and, most recently, 
by Evans [7] further broaden the area. 

The Fibonacci numbers are specified as F1 = 1, F2 = 1, and, for all 
integral n, Fn + 2 = Fn + 1 + Fn . 

LmmCL'* F3m is even, and FSm + 1 and F3m+2
 a r e odd. 

The proof of the lemma is very straightforward. 
Let us start to make such a partition into sets A and B. Now, 1 and 2 

cannot be in the same set9 since 1 = F2 and 2 = F3 add up to 3 = Fh. Also9 
3 and 2 cannot be in the same set9 because 2 + 3 = 5 = Fg. 

A = {1, 3, 69 8, 99 11, . . . } ; 

B = {29 4, 59 79 10, 12, 13, ...}. 

If we were to proceed, we would find that there is but one choice for 
each integer. We also note, from Fn + 2 = ̂ n + 1

 + Fn * that F2 belongs in set 


