$$
\begin{equation*}
L_{n} \equiv r_{n}\left(\bmod n^{2}\right), 0 \leqq r_{n}<n^{2}, \tag{6.6}
\end{equation*}
$$

for all n such that $2 \leqq n \leqq 7611$, with the following results.

1. The remainders $r_{n}=0$ and $r_{n}=1$ were never found. This result led us to formulate Conjecture 2 of our Introduction.
2. The value $r_{n}=2$ appeared only if $n \equiv 0(\bmod 24)$.

For $n=24 k$, he found that $r_{n}=2$ precisely for the following 100 values of k :

$k=$| 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 14 | 15 | 16 | 18 | 20 | 24 | 25 | 27 | 28 | 30 |
| 32 | 36 | 40 | 42 | 45 | 46 | 48 | 50 | 51 | 54 |
| 55 | 56 | 57 | 60 | 64 | 70 | 72 | 75 | 80 | 81 |
| 84 | 90 | 92 | 96 | 98 | 100 | 102 | 108 | 110 | 112 |
| 114 | 120 | 125 | 126 | 128 | 135 | 138 | 140 | 144 | 150 |
| 153 | 155 | 160 | 162 | 165 | 168 | 171 | 180 | 182 | 184 |
| 188 | 192 | 195 | 200 | 204 | 205 | 210 | 215 | 220 | 224 |
| 225 | 228 | 230 | 240 | 243 | 250 | 252 | 255 | 256 | 270 |
| 275 | 276 | 280 | 285 | 288 | 294 | 300 | 305 | 306 | 310 |

This is remarkable numerical evidence. From generally large values, the remainder r_{n} in (6.6) drops down to $r_{n}=2$ for $n=24 k$ and values of k as listed. We also mention that the last Lucas number, L_{7611}, has 1591 digits.

From the identity $L_{4 n}-2=5\left(F_{2 n}\right)^{2}$ [2, Identity I_{16}, p. 59], it follows that $L_{24 k}-2=5\left(F_{12 k}\right)^{2}$. Therefore, $L_{24 k}-2 \equiv 0\left[\bmod (24 k)^{2}\right]$ if and only if

$$
\begin{equation*}
F_{12 k} \equiv 0(\bmod 24 k) \tag{6.7}
\end{equation*}
$$

From the computer results above, we see that (6.7) holds for the 100 values of k listed above, and does not hold for the other values of

$$
\begin{gathered}
k \leqq[7611 / 24]=317 . \\
\text { REFERENCES }
\end{gathered}
$$

1. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 3rd ed. Oxford: Oxford University Press, 1954.
2. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin Co., 1969.
3. V. E. Hoggatt, Jr., \& Marjorie Bicknell. "Some Congruences of the Fibonacci Numbers Modulo a Prime p." Math. Magazine 47 (1974):210-214.
4. D. H. Lehmer. Personal letter to the authors, November 28, 1976.
*\% \% \%

FREE GROUP AND FIBONACCI SEQUENCE

G. WALTHER
Institut für Didaktik der Mathematik, Postfach 380, W. Germany

Let X be a nonempty set $X=\left\{x_{i} \mid i \in I\right\}$ where I is a suitable index set and X^{-1} another set in one-to-one correspondence with X. A word of length n in the elements of $X \cup X^{-1}$ is an ordered set of n elements ($n \geq 0$) each of $X \cup X^{-1}$.

A word of length n will be written as $x_{i_{1}}^{s_{1}} \ldots x_{i_{n}}^{s_{n}}$ where each sign s_{i} is i or -1 . With " 1 " we denote the unique word of length 0 . The product of two words is defined as follows. Let α be an arbitrary word $1 \alpha=a 1: a$.

Let a and b be words of positive lengths m and n; i.e.,
then

$$
a=x_{i_{1}}^{s_{1}} \ldots x_{i_{m}}^{s_{m}} \quad \text { and } \quad b=x_{j_{1}}^{t_{1}} \ldots x_{j_{n}}^{t_{n}},
$$

$$
a b:=x_{i_{1}}^{s_{1}} \ldots x_{i_{m}}^{s_{m}} x_{j_{1}}^{t_{1}} \ldots x_{j_{n}}^{t_{n}}
$$

and the length of the product is $m+n$.
If we define the relation "adjacent" between words, which turns out to be an equivalence relation, and the product $[a][b]:=[a b]$ of equivalence classes [α] and [b] of words α and b, we get the free group $F(X)$ over the generating set X.

A word in $X \cup X^{-1}$ is reduced if it has the form

$$
x_{i_{1}}^{s_{1}} \ldots x_{i_{m}}^{s_{m}} \quad \text { and } \quad x_{i_{k+1}}^{s_{k+1}} \neq x_{i_{k}}^{-s_{k}} \text { for } k=1,2, \ldots, m-1
$$

Two elements, $x_{i}^{s_{i}}$ and $x_{j}^{s_{j}} \varepsilon X \cup X^{-1}$, will be called an inverse couple of elements if

$$
x_{i}^{s_{i}} x_{j}^{s_{j}}=1 \quad \text { or } \quad x_{j}^{s_{j}} x_{i}^{s_{i}}=1 .
$$

Now we are in the position to formulate our problem.
Let $a=a_{1} \ldots a_{n}$ be a word of length n with $\alpha_{i} \varepsilon X \cup X^{-1}$ for $1 \leq i \leq n$. What is the maximum number of ways in which it could be reduced
a. to different words of length $g(n \geq g)$?
b. to different words?
c. to words of length g ?

Theorem: Let $A_{g n}, B_{n}$, and $C_{g n}$ be the numbers mentioned above. Then we get
a) $A_{g n}=\left\{\begin{array}{cl}\left(\frac{g+n}{2}\right. \\ g\end{array}\right) \quad$ if g and n have the same parity and $g \leq n$
B)

$$
B_{n}=B_{n-1}+B_{n-2}, B_{0}=B_{1}=1
$$

$$
C_{g n}=\left\{\begin{array}{cl}
\binom{n-1}{t}-\binom{n-1}{t-2} & \text { for } g=n-2 t \text { and } 0 \leq t<\frac{n}{2} \\
1 & \text { for } g=n \\
0 & \text { otherwise }
\end{array}\right.
$$

Corollary: Expression of B_{n} as a sum of binomial coefficients.
With the convention $\binom{n}{0}=1,\binom{n}{m}=0$, for $n<m$,
we get the well-known relation

$$
B_{n}=\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\cdots .
$$

To prove the theorem, we use a known procedure to construct the reduced word for $a=a_{1} \ldots a_{n}$.

Let $w_{0}:=1$ and $w_{1}:=a_{1}$, and let w_{i} be found for $1 \leq i<n$.
i) If w_{i} does not end in α_{i+1}^{-1}, then $w_{i+1}:=w_{i} \alpha_{i}$.
ii) If w_{i} does end in α_{i+1}^{-1}, then $w_{i+1}:=z$, where $w_{i}=z \alpha_{i+1}^{-1}$.

In a somehow "inverse" sense, we can get a survey over the reduction process by means of a tree.

Take the word $a=a_{1} a_{2} a_{3} a_{4} a_{5}$ for example:

It is evident, from the cancellation process, that $A_{g n}=C_{g n}=0$ iff g and n have different parity.
Proof:
a) As cancellation diminishes the length of a word by 2 , it is clear, from rules (i) and (ii) that

$$
A_{g n}=A_{g, n-2}+A_{g-1, n-1} \text { for } n \geq 2,
$$

with the additional conditions $A_{g n}=0$ iff g and n have different parity, $A_{0 n}=1, A_{g g}=1$ for $0 \leq g \leq n, A g n=0$ for $g>n$.

The transformation $D_{i k}:=A_{k, 2 i-k}$ for $0 \leq k \leq i, D_{i i}=1$ for $i \geq 0$,

$$
D_{i 0}= \begin{cases}1 & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd }\end{cases}
$$

and $D_{i k}=0$ for $k>i$, together with its inverse transformation,

$$
A_{p q}=\frac{D_{\frac{p+q}{}}^{2}, p}{} \text {, }
$$

yields the fundamental binomial relation

$$
D_{i k}=D_{i-k, k}+D_{i-1, k-1} \text { for } i, k \geq 1
$$

with solution $D_{i k}=\binom{i}{k}$. Translating this result, we get $A_{g n}=\left(\begin{array}{c}9+n \\ 2 \\ g\end{array}\right)$.
β For $n=0,1,2$, the proposition is true. Let $a=a_{1} \ldots a_{n-2} a_{n-1} a_{n}$ be a word of length $n-2$. Then we distinguish two cases:

1. $\alpha_{i} \alpha_{n} \neq 1$ for $i<n$ (i.e., α_{i} is the last "letter" of a word of maximum length n - 1). By the induction hypothesis, the maximum number of different words to which a word of length $n-1$ can be reduced is B_{n-1}. The B_{n-1} different words $w_{1}, \ldots, w_{B_{n-1}}$ consequently lead to B_{n-1} different words $w_{1} a_{n}, \ldots, w_{B_{n-1}} a_{n}$.
2. $a_{i} \alpha_{n}=1$. I.e., a_{i}, a_{n} is an inverse couple for $i<n$; therefore, the length of words under consideration is reduced by 2. Consequently, we have a contribution of B_{n-2} to the amount of B_{n}.
γ) For illustration consider the word $\omega=\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{4} \alpha_{5}$ which could be reduced to a_{1}, for example, in exactly two ways:
α_{2}, a_{3} and α_{2}, α_{5} are two inverse couples;
a_{2}, a_{3} and a_{4}, a_{5} are two inverse couples (cf. the tree above).
The cancellation process yields the following special relations:

$$
\begin{gathered}
C_{m n}=0 \text { for } m>n ; C_{m m}=1 ; C_{m n}=0 \text { for } m, n, \text { with different parity; } \\
C_{0 n}=C_{1, n-1} \text { for } n \geq 1 .
\end{gathered}
$$

A simple induction argument shows that $C_{n-2, n}=n-1$ for $n \geq 2$.

We get all possible reduced words w^{\prime} from $w=a \ldots a_{n-1} a_{n-2} a_{n}$ of length n-2 either extending all $n-2$ words

$$
\begin{gathered}
w^{\prime \prime}=x_{i_{1}} \ldots x_{i_{n-2}} \\
\left(i_{1}<i_{2}<\ldots<i_{n-2} \text { and } x_{i_{j}} \varepsilon\left\{\alpha_{1}, \ldots, a_{n-2}\right\}\right)
\end{gathered}
$$

with a_{n}, i.e., $w^{\prime}=w^{\prime \prime} a_{n}$ or from the single word $a_{1} \ldots a_{n-2}$. . In the latter case, a_{n-1}, a_{n} is the only inverse couple of w.

Besides the special relations for $C_{m n}$, we have the general relation

$$
\begin{equation*}
C_{m n}=C_{m+1, n-1}+C_{m-1, n-1} \text { for } m, n \geq 1 \tag{*}
\end{equation*}
$$

Let $E_{i k}:=C_{k, i+k}$ for $i, k \geq 0$, respectively, $C_{m n}=E_{n-m, m}$ for $n \geq m$ and $n, m \geq 0$. From $C_{0 n}=C_{1, n-1}$ follows $E_{i 0}=E_{i-2,1}$ for $i \geq 2$.

From (*), we get

$$
\begin{equation*}
E_{i k}=E_{i, k-1}+E_{i-2, k+1} \text { for } i \geq 2, k \geq 1 \tag{**}
\end{equation*}
$$

Considering $C_{n-2, n}=n-1$ for $n \geq 2$, we have $E_{2 k}=1+k$. Next we express $E_{i k}$ by $E_{i-2, k}$ for $i \geq 2$; (**) yie1ds

$$
E_{i k}=\sum_{p=1}^{k+1} E_{i-2, p}
$$

An iteration procedure and $E_{2 k}=1+k$ leads to the following "monstrous" expression:

$$
E_{2 t, k_{t-1}}=\sum_{k_{t-2}=1}^{k_{t-1}+1} \ldots \sum_{k_{1}=1}^{k_{2}+1} \sum_{r=1}^{k_{1}+1}(r+1) \text { for } t \geq 2, k_{i} \geq 0
$$

Remark: Since $C_{m n}=0$ for m, n with different parity, we have $E_{i k}=0$ for i an odd number.

We prove by induction that

$$
E_{2 t, k_{t-1}}=\binom{k_{t-1}+2 t-1}{t}-\binom{k_{t-1}+2 t-1}{t-2}, t \geq 2
$$

For $t=2$, we have

$$
\begin{aligned}
E_{2, k_{1}}=\sum_{r=1}^{k_{1}+1}(r+1) & =\frac{\left(k_{1}+4\right)\left(k_{1}+1\right)}{2}=\frac{\left(k_{1}+3\right)\left(k_{1}+2\right)}{2}-1 \\
& =\binom{k_{1}+3}{2}-\binom{k_{1}+3}{0}
\end{aligned}
$$

To show

$$
\begin{aligned}
\sum_{k_{t-1}=1}^{k_{t}+1}\left[\binom{k_{t-1}+2 t-1}{t}-\binom{k_{t-1}+2 t-1}{t-2}\right] & =\binom{k_{t}+2 t+1}{t+1}-\binom{k_{t}+2 t+1}{t-1} \\
& =E_{2(t+1), k_{t}}
\end{aligned}
$$

we need the following
Lemma: $\quad \sum_{k=1}^{n+1}\binom{c+k}{j}=\binom{c+n+2}{j+1}-\binom{c+1}{j+1}$.

Proof of the Lemma: On the one hand
on the other hand

$$
\begin{aligned}
& \sum_{k=1}^{n} \prod_{i=0}^{j}(k+i)=(j+1)!\sum_{k=1}^{n}\binom{k+j}{j+1} \\
& \sum_{k=1}^{n} \prod_{i=0}^{j}(k+i)=\frac{1}{j+2} \sum_{i=0}^{j+1}(n+i)
\end{aligned}
$$

Combining these two identities yields

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{k+j}{j+1}=\binom{n+j+1}{j+2} \tag{***}
\end{equation*}
$$

From

$$
\sum_{k=1}^{n+1}\binom{c+k}{j}=\sum_{k=0}^{c+n-j+2}\binom{k+j-1}{j}-\sum_{k=0}^{c-j+1}\binom{k+j-1}{j}
$$

follows, with (***), the assertion.
Now we continue the proof of the theorem. With the aid of the lemma,

$$
\begin{aligned}
& \sum_{k_{t-1}=1}^{k_{t}+1}\left[\binom{k_{t-1}+2 t-1}{t}-\binom{k_{t-1}+2 t-1}{t-2}\right] \\
& \quad=\binom{k_{t}+2 t+1}{t+1}-\binom{2 t}{t+1}-\binom{k_{t}+2 t+1}{t-1}+\binom{2 t}{t-1} \\
& =\binom{k_{t}+2 t+1}{t+1}-\binom{k_{t}+2 t+1}{t-1}=E_{2(t+1), k_{t}} .
\end{aligned}
$$

To prove the corollary, we use

$$
\begin{aligned}
B_{n} & =\sum_{g \leq n} A_{g n}=\sum_{g \leq n}\binom{\frac{g+n}{2}}{g}=\binom{n}{n}+\binom{n-1}{n-2}+\cdots \\
& =\binom{n}{0}+\binom{n-1}{1}+\cdots .
\end{aligned}
$$

$\binom{\frac{g+n}{2}}{g}$ is defined, because g and n have the same parity.

