THE DECIMAL EXPANSION OF 1/89 AND RELATED RESULTS

CALVIN T. LONG
Washington State University, Pullman, WA 99164

One of the more bizarre and unexpected results concerning the Fibonacci sequence is the fact that

\[\frac{1}{89} = 0.0112358 \]

\[
\begin{array}{c}
13 \\
21 \\
34 \\
55 \\
89 \\
144 \\
233 \\
\vdots
\end{array}
\]

which follows immediately from Binet's formula, as do the equations

\[\frac{19}{89} = \sum_{i=1}^{m} \frac{L_i}{10^i} \]

\[\frac{1}{109} = \sum_{i=1}^{m} \frac{F_i}{(-10)^i} \]

and

\[\frac{21}{109} = \sum_{i=1}^{m} \frac{L_i}{(-10)^i} \]

where \(F_i \) denotes the \(i \)th Fibonacci number. The result follows immediately from Binet's formula, as do the equations

where \(L_i \) denotes the \(i \)th Lucas numbers. It is interesting that all these results can be obtained from the following unusual identity, which is easily proved by mathematical induction.

Theorem 1: Let \(a, b, c, d, \) and \(B \) be integers. Let \(\{\mu_n\} \) be the sequence defined by the recurrence \(\mu_0 = a, \mu_1 = d, \mu_{n+2} = a\mu_{n+1} + b\mu_n \) for all \(n \geq 2 \). Let \(m \) and \(N \) be integers defined by the equations

\[B = m + Ba + b \quad \text{and} \quad N = cm + dB + bc. \]

Then

\[B^n N = m \sum_{i=1}^{n+1} B^{n+1-i} \mu_i + B \mu_{i+1} + b \mu_i \]

for all \(n \geq 0 \). Also, \(N \equiv 0 \pmod{B} \).

Proof: The result is clearly true for \(n = 0 \), since it then reduces to the equation

\[N = cm + dB + bc \]

of the hypotheses. Assume that

\[B^{k+1} N = m \sum_{i=1}^{k+1} B^{k+2-i} \mu_i + B \mu_{i+1} + b \mu_i \]

Then
\[
\begin{align*}
\mu_n &= \left(\frac{c}{2} + \frac{2d - c}{\sqrt{a^2 + 4b}} \right) \left(\frac{a + \sqrt{a^2 + 4b}}{2} \right)^n + \left(\frac{c}{2} - \frac{2d - c}{\sqrt{a^2 + 4b}} \right) \left(\frac{a - \sqrt{a^2 + 4b}}{2} \right)^n.
\end{align*}
\] (6)

Thus it follows from (5) that
\[
\frac{N}{Bm} = \sum_{i=1}^{n+1} \frac{\mu_{i-1}}{B^i} + \frac{B_m \mu_{n+1} + b \mu_n}{mb^{n+1}} = \sum_{i=1}^{n} \frac{\mu_{i-1}}{B^i},
\] (7)

provided that the remainder term tends to 0 as \(n \) tends to infinity, and a sufficient condition for this is that
\[
\left| \frac{a + \sqrt{a^2 + 4b}}{2B} \right| < 1 \quad \text{and} \quad \left| \frac{a - \sqrt{a^2 + 4b}}{2B} \right| < 1.
\]

Thus we have proved the following theorem.

Theorem 2: If \(a, b, c, d, m, N, \) and \(B \) are integers, with \(m \) and \(N \) as defined above and if
\[
\left| \frac{a + \sqrt{a^2 + 4b}}{2B} \right| < 1 \quad \text{and} \quad \left| \frac{a - \sqrt{a^2 + 4b}}{2B} \right| < 1,
\]

then
\[
\frac{N}{Bm} = \sum_{i=1}^{n} \frac{\mu_{i-1}}{B^i}.
\] (8)

Of course, equations (1)-(4) all follow from (8) by particular choices of \(a, b, c, \) and \(d \). To obtain (2), for example, we set \(a = 2, \) \(b = 1, \) and \(B = 10 \). It then follows that
\[
m = B^2 - Ba - b = 100 - 10 - 1 = 89
\]
\[
N = cm + dB + bc = 178 + 10 + 2 = 190
\]
and
\[
\frac{19}{89} = \frac{190}{10 \cdot 89} = \frac{N}{Bm} = \sum_{i=1}^{n} \frac{L_{i-1}}{10^i} \quad \text{as claimed.}
\]

To obtain (3), we set \(a = 0, b = 1, \) and \(B = -10 \). Then
\[
m = B^2 - Ba - b = 100 + 10 - 1 = 109,
\]
\[
N = cm + dB + bc = -10,
\]
and
\[
\frac{N}{Bm} = \frac{-10}{-10 \cdot 109} = \frac{1}{109} = \sum_{i=1}^{n} \frac{L_{i-1}}{(10)^i} \quad \text{as indicated.}
\]
Finally, we note that interesting results can be obtained by setting B equal to a power of 10. For example, if $B = 10^h$ for some integer h, $a = 0$, and $a = b = d = 1$,

$$m = 10^{2h} - 10^h - 1, \quad H = 10^h,$$

and (8) reduces to

$$\frac{1}{10^{2h} - 10^h - 1} = \sum_{i=1}^{m} \frac{F_{i-1}}{10^{hi}}.$$ \hspace{1cm} (9)

For successive values of h this gives

$$\frac{1}{99} = \sum_{i=1}^{m} \frac{F_{i-1}}{10^{2hi}},$$ \hspace{1cm} (10)

as we already know,

$$\frac{1}{9899} = \sum_{i=1}^{m} \frac{F_{i-1}}{10^{2hi}} = .000101020305081321\ldots,$$ \hspace{1cm} (11)

$$\frac{1}{998999} = \sum_{i=1}^{m} \frac{F_{i-1}}{10^{3hi}} = .000001001002003005008013\ldots,$$ \hspace{1cm} (12)

and so on. In case $B = (-10)^h$ for successive values of h, $a = 0$, and $a = b = d = 1$, we obtain

$$\frac{1}{109} = \sum_{i=1}^{m} \frac{F_{i-1}}{(-10)^i},$$ \hspace{1cm} (13)

$$\frac{1}{10099} = \sum_{i=1}^{m} \frac{F_{i-1}}{(-100)^i},$$ \hspace{1cm} (14)

$$\frac{1}{1000999} = \sum_{i=1}^{m} \frac{F_{i-1}}{(-1000)^i},$$ \hspace{1cm} (15)

and so on. Other fractions corresponding to (2) and (3) above are

$$\frac{19}{89}, \frac{199}{9899}, \frac{1999}{998999}, \ldots$$

and

$$\frac{21}{109}, \frac{201}{10099}, \frac{2001}{1000999}, \ldots.$$