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ABSTRACT 

This article describes a nondeterministic search plan, hereinafter called 
the mid-point technique. While not optimal in the minimax sense, the plan of-
fers several possible advantages over the Fibonacci technique. Further, the 
expected value of the reduction ratio at each stage is identical to the reduc-
tion ratio achieved by the minimax optimal Fibonacci method. 

IMTROVUCTWhl 

Search techniques often use the minimax criterion as the assumed measure 
of effectiveness. As a result of Kiefer?s pioneering work [4] demonstrating 
the minimax optimality of the Fibonacci search technique, a number of authors 
have focused attention on this particular search method. See, for instance, 
[1], [3], [5], [6], [7], and [8]. 

Unfortunately, in the authors1 opinions, there are three disadvantages as-
sociated with the Fibonacci technique. First, the plan requires that the final 
reduction ratio be specified prior to beginning the search. Second, the Fibo-
nacci search is one of the more complex unimodal sequential search techniques 
available, and this complexity may cause some potential users to avoid the Fi-
bonacci technique in favor of a simpler method such as the dichotomous search 
or the golden section search [6]. Finally, if there is an upper bound on the 
number of experiments permitted, it may be impossible to achieve the required 
reduction ratio, i.e., the Fibonacci method does not provide the user with the 
option to gamble. 

On a more fundamental level, the minimax criterion of optimality itself is 
open to challenge. The extremely pessimistic and jaundiced view of nature in-
herent within the minimax criterion may not represent a desirable framework 
from which to view the search procedure. While possibly valid for cases of 
warfare or for investors with extreme risk aversion, the minimax assumption of 
a malevolent opponent capable of altering the probabilities inherent within any 
gamble should be looked at with some skepticism. Murphy fs Law notwithstanding, 
it is not reasonable to assume that all gambles taken by the searcher will 
necessarily be losing ones. 

ASSUMPTIONS Of THE MIP-POIOT TECHMldliE 
The mid-point technique utilizes five assumptions. The first four are read-

ily recognizable as being common ones often employed in search procedures. The 
fifth represents a significant departure from the minimax optimal Fibonacci 
method. 

1. The response variable (y) is a function of the independent variable (x) 
and has a maximum (2/*) at x. = x*. The purpose of the search is to determine or 
approximate the value of x*. 

2. The function is unimodal; that is, given two experiments x1 and x2 with 
X]_ ^ X2 , let their outcomes by y1 and y2s respectively. Then x2 < x* implies 
y1 < y2 and x1 > x* implies yx > yz. 

3. The minimum separation distance (e) between experiments is negligible. 
4. The original interval of uncertainty for x can be scaled to [0, 1], 
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5. A priori, any given interval of finite length is assumed to have the 
same probability of containing x* as any other interval of the same length 
(where both intervals lie within the remaining interval of uncertainty). 

MECHANICS OF THE UTD-POINT TECHNIQUE 

The first experiment, x1, is placed at the center of the interval, and the 
second experiment, x2 * is placed at £ (the minimum possible separation) to the 
right of x±. If y1 > y2, the interval [x2, 1] is dropped from further consid-
eration. If y2 > yl9 the interval [0, x1] is discarded. Under the assumptions 
of unimodality and negligible separation distance, this will necessarily reduce 
the interval of uncertainty to one-half of its original length. The third ex-
periment, xS9 is then placed at the center of the remaining interval. The 
third experiment will either halve the interval of uncertainty or reduce it by 
e (the distance between x± and x2). Under assumption 5, each of these mutually 
exclusive and exhaustive events is assumed to occur with probability 0.5. In 
the former case, the fourth experiment is again placed at the center of the re-
maining interval of uncertainty with the outcome of xh determining whether or 
not the remaining interval is significantly reduced. For the latter case (x3 
having negligible effect on the reduction ratio), xh is placed a distance of e 
from x3, and the fourth experiment necessarily reduces the interval of uncer-
tainty to one-half its pervious length. 

Figure 1 represents two of the six possible sets of experimental outcomes 
leading to a reduction ratio of 4. 

CASE I CASE I 
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Fig. 1 

Y 4 - Y 3 ; X 2 - X < X 4 

R = 4 

This search procedure continues until either a satisfactory reduction ratio 
has been attained or until the maximum number of experiments permitted has been 
run. 
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HOVELING THE mV-VOINT SEARCH TECHNIQUE 
Each experiment of the mid-point technique results in exactly one of two 

possible outcomes: (1) the remaining interval of uncertainty is significantly 
reduced (by half), or (2) the interval of uncertainty is not significantly re-
duced. Clearly x1 (by itself) has no effect, while the result of x2 necessar-
ily reduced the original interval by half. For n _> 3, if xn is placed in the 
center of the remaining interval, it will significantly reduce the interval 
(with probability 0.5) or it will fail to do so (also with probability 0.5). 
If, however, xn is placed a distance e from xn__19 it will significantly reduce 
the interval (with probability 1) or will fail to do so (with probability 0). 

It is thus natural to describe each experimental outcome as resulting in 
either a "success" (a significant reduction of the interval of uncertainty) or 
a "failure" (no significant reduction achieved). Further, the probabilities 
for achieving success or failure on each experimental trial depend exclusively 
on where the experiment is placed (either in the center of the remaining inter-
val, or a distance e from the last experiment) , where placement depends upon 
the information derived from the previous experiment. 

This suggests the use of a Markov chain to model the process (see Figure 
2) . Transition to State 0 represents a success in the terminology described 
above, while a transition to State 1 represents a failure. 

"p 4 
i o 

\l + q 1 + q) 
Fig. 2 

The first two transitions of the chain are deterministic. The first experi-
ment results in the occurrence of State 1 and the second experiment results in 
State 0 with a probability of 1. In this particular application, p = q = 0.5. 
States 0 and 1 form an irreducible recurrent set. The process of interest is 
the return times to State 0, which clearly forms a renewal process. 

In terms of the mid-point technique, each transition of the Markov chain 
represents one experiment. The result of the first experiment necessarily re-
sults in a failure, that is, the chain making the transition to State 1 (with 
probability 1). Since the second experiment is placed at a distance e from x19 
the result of x2 is necessarily a success, that is, the chain making the tran-
sition from State 1 to State 0 (also with probability 1). This first visit to 
State 0 is called the first renewal, and the first visit and all subsequent re-
turns to State 0 result in a halving of the remaining interval of uncertainty. 
Equivalently, each time the chain undergoes a renewal, the reduction ratio is 
effectively doubled. 

Obtaining the probability mass function for the number of renewals in a 
fixed number of transitions is a relatively straightforward matter (see Appen-
dix) . From this mass function, the exact probability for the number of renew-
als can be computed. If the random variable Nn represents the number of visits 
to State 0 after n transitions of the chain, then the reduction ratio Rn after 
n transitions (experiments) is simply expressed as Rn = 2 ". Since the proba-
bility mass function for Nn has been completely specified, this also specifies 
the mass function for the various values that the random variable Rn takes. 
From this, the expected value of Rn immediately follows. 

Table 1 lists the expected value of the reduction ratio after n transitions 
or experiments, for values of n ranging from one to ten. Readers of this jour-
nal will immediately recognize the Fibonacci sequence. 
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Table 1 

Number of Number of Equivalent Probability Expected Value 
Experiments Renewals Reduction Ratio of Occurrence of Reduction Ratio 

1 

1 

2 

3 

5 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0 

0 

1 

1 
2 

2 
3 

2 
3 
4 

3 
4 
5 

3 
4 
5 
6 

4 
5 
6 
7 

4 
5 
6 
7 
8 

5 
6 
7 
8 
9 

1 

1 

2 

2 
4 

4 
8 

4 
8 
16 

8 
16 
32 

8 
16 
32 
64 

16 
32 
64 
128 

16 
32 
64 
128 
256 

32 
64 
128 
256 
512 

1.0 

1.0 

1.0 

0.5 
0.5 

0.75 
0.25 

0.25 
0.625 
0.125 

0.500 
0.4375 
0.0625 

0.125 
0.5625 
0.28125 
0.03125 

0.3125 
0.500 
0.171875 
0.015625 

0.0625 
0.4375 
0.390625 
0.1015625 
0.0078125 

0.1875 
0.46875 
0.28125 
0.05859375 
0.00390625 

13 

21 

34 

55 

89 

ADVANTAGES Of THE MW-FOWT TECHNIQUE 

1. When a search point, x^9 falls sufficiently close to x* 9 the subsequent 
experiments, xi + k9 will all be successes with consequent rapid convergence. As 
an extreme example, the case where ̂  is located at the center of the original 
interval of uncertainty can be considered. In this case, x* will lie in the 
interval [xl9 x2]. For x2 and all subsequent experiments, the interval of un-
certainty will be halved. 

2. In many situations involving a direct search, the marginal cost of addi-
tional experiments is constant, while the marginal value of information rapidly 
decreases with the time required to obtain the information. The expected profit 
of the search under these circumstances may be larger when using the mid-point 



1981] A NON-FIBONACCI SEARCH PLAN WITH FIBONACCI-LIKE RESULTS 135 

technique than when using the Fibonacci method. For example, if a reduction 
ratio of at least 30 is required and if the cost of placing experiments is $10 
per experiment while revenues are [100 - O.ln2], the Fibonacci search requires 
9 experiments and gives a profit of $1*90. The mid-point technique has an ex-
pected profit of $13.50 and requires 6 to 10 experiments. 

3. If the desired reduction ratio must be accomplished within a specified 
number of search points, the Fibonacci search may be incapable of meeting the 
requirement. Under this circumstance, a rational choice is to gamble and the 
mid-point technique does allow gambling, although it does not insure a winning 
gamble. 

4. The mid-point technique is easier to use than the Fibonacci search. 
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APPENDIX 

The first two transitions of the Markov chain are strictly deterministic. 
The chain goes to State 1 and then to State 0 (all with probability 1). There-
fore, for the purposes of this analysis, we can ignore the first two transi-
tions and take State 0 (our renewal state) as the initial state of the chain. 
Diagrammatically, the chain appears as in Figure 2. 

Let N(t) be the number of renewals in [0, t] where t represents time, and 
let 772 be the number of transitions that occur in this interval. If each tran-
sition is assumed to require one time unit, then 772 is the integer part of t . 
We are interested in the probability distribution for the number of renewals in 
a finite number of transitions, i.e., P{N(t) = k] for the various values of k. 
Counting the initial state of the chain as a renewal, the total number of re-
newals is clearly equal to one plus the number of returns to State 0. 

Let /(•) be the probability mass function of inter-renewal times. Then 
/(I) = p and f(2) = q. 

Let fk(k + n) be the probability of obtaining the fcth return, the (k + l)th 
renewal, on the (k + n)th transition for n = 0, 1,...... k. Note that fk is the 
fc-fold convolution of /('•)• A little algebra quickly reveals that 

/ (&•+ n) = (k\ pk-nqn f o r n = 0, 1, ', fe. 
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For purposes of algebraic simplicity, let m = k + n. Then 

where fk(m) is the probability of obtaining the kth return on the mth transi-
tion. Similarly, 

fk-Hm) =(m
k_~kl l)p2k-m-zqm-k+1; m = k - 1, k, ..., Ik - 2. 

***(*) - £/*<w); m = k, k+ I, ..., 2k. 
m<.t 

Note that Fk is the probability of obtaining the kth return, the (k + l)th re-
newal, at or prior to time t, where the maximum value of m is the largest inte-
ger less than or equal to t. It follows immediately that 

Fk(t) = P{N(t) >_ k + 1}. 
Similarly, 

F*"1^) = ̂ /k"1(/7z) = P{N(t) >. k}a 
m<_t 

With Fk and F completely specified as above, and using 

P{N(t) = k} = Fk'1(kt) - Ffe(t) 

(see [2, Ch. 9]), the distribution of N'(t) can be determined. 
Algebraic manipulation and simplification results in the following: 

P{N(t) = k} = F k - 1 ( t ) Ffe(t) 

0; 
fr - 1 

P ; 

t < k - l 
fc - l <. £ < fe 

1-S(B.Jptt'V-1; 

< Ik 

0: 

2k - 2 <t < 2k 

t > 2k 

where [t] is the integer part of t. 
A short computer program was written in FORTRAN to calculate these proba-

bilities as well as the mean, variance, standard deviation, and skew for the 
number of renewals and its equivalent reduction ratio. The number of transi-
tions was varied from one to twenty in increments of one. The program was com-
piled and executed under WATFIV and run on an AMDAHL 470/V6 computer in well 
under 0.5 seconds. Copies of this program are available on request. 


