
1981] INITIAL DIGITS IN NUMBER THEORY 121 

The latter implies that both D - 3 and D - 4 are early and so, by assumptions 
are differences. Therefore, by Theorem 2 there exists an integer b for which 

that is j 
— + 7T > D - 4 and ~h — < D + 1; 
a 2 a 2 5 

2>-£ + 8 - # < - < 2 > - Z ? + | a . 2 a " " 2U 

Comparing this with (4), we obtain 

n - 8 < n - 4 - 2 a < Z ? - £ < n - 7, 

which is contrary to the fact that b - D and n are integers. 

ACKNOWLEDGMENT 

The author would like to thank Gerald Bergum for his aid in increasing the 
readability of this paper. 

REFERENCES 

1. J. C. Butcher. "On a Conjecture Concerning a Set of Sequences Satisfying 
The Fibonacci Difference Equation/1 The Fibonacci Quarterly 16 (1978):81-
83. 

2. M. D. Hendy, "Stolarskyfs Distribution of Positive Integers." The Fibo-
nacci Quarterly 16 (1978)2 70-80. 

3. V. E. HoggattsJr. Fibonacci and Lucas Numbers* Boston: Houghton Mifflin9 
1969. Pp. 34-35. 

4. K. Stolarsky. "A Set of Generalized Fibonacci Sequences Such That Each 
Natural Number Belongs to Exactly One." The Fibonacci Quarterly 15 (1977): 
224. 

INITIAL DIGITS IN NUMBER THEORY 

J. KNOPFMACHER 
University of the Witwatersrand, Johannesburg, 2001, South Africa 

JNTR0VUCT10N 

It has been observed empirically by various authors (cf. Raimi [5] and his 
references) that the numbers in "random" tables of physical or other data tend 
to begin with low digits more frequently than one might on first consideration 
expect. In facts in place of the plausible-looking frequency of l/99 it is 
found that for the numbers with first significant digit equal to 

a e {1, 2S ...9 9} 

in any particular table the observed proportion is often approximately equal to 

»M-log 

A variety of explanations have been put forward for this surprising phenomenon. 
Although more general cases have also been considered, most people might 

agree that it should suffice to consider only sets of positive integers, since 
empirical data are normally listed in terms of finite lists of numbers with 
finite decimal expansions (for which the signs or positions of decimal points 
are immaterial here). On accepting this simplification, the common tendency 
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would probably then be to seek an explanation in terms of the concept of natu-
ral density of a set T of positive integers, i.e., 

i i m ^ y i . 
n<_x, nzT 

Unfortunately, this density simply does not exist for the immediately relevant 
set N(a) of all positive integers beginning with the digit a as above, and this 
fact seems to have led both to a search for alternative explanations and to a 
certain amount of controversy as to what should actually constitute a satisfac-
tory "explanation." Ignoring the latter difficulty for the moment (regarding 
which some further comments are offered in Section 3 below), the situation may 
be summarized by noting that various explanations have been suggested in terms 
of extensions of the density concepts that do exist and take tne experimentally 
observed value of log10(1+ 1/a) for the set N(a); the most general and convin-
cing of such approaches is perhaps that of Cohen [1]. 

The main purpose of this note is to add to these explanations by showing 
that the same type of initial-digit phenomenon occurs in a variety of number-
theoretical situations. A notable investigation of this phenomenon of specific 
number-theoretical interest is that of Whitney [7] regarging the set P of all 
prime numbers. Whitney employs perhaps the most commonly used extension of 
the density concept, logarithmic (or Dirichlet) density, and this will also be 
used below. His discussion uses a corollary of one of the deeper forms of the 
Prime Number Theorem. 

Here, using only elementary methods, it will be shown that, for quite a 
wide class of sets T of positive integers possessing a natural density, the 
subset T(a) = TDN(a) has the relative logarithmic density log10(l+l/a) in T. 
More generally, for quite a wide class of arithmetical functions, /, the loga-
rithmic average value of / over all positive integers compared with that over 
N(a) is shown to be weighted in the ratio l:log10(1+ 1/a). In the actual dis-
cussion below, 10 is replaced by an arbitrary base q _> 2, and a is replaced by 
an arbitrary initial sequence a±, a2, ..., ar of digits a^e {0, 1, ..., q - 1} 
with a± £ 0. 

1. LOGARITHMIC AVERAGES kW VEHS1TIES 
In order to cover a variety of specific examples of arithmetical functions 

and sets of positive integers in a fairly wide setting, first consider any 
fixed integers q >. 2 and 

A = a ^ ' 1 + a2qr~2 + ••• + ar, 
with ai e {0, 1, ..., q - 1} and ax + 0. Let N(A) denote the set of all posi-
tive integers whose canonical a-adic expansions begin with the sequence of di-
gits a19 a2, .*., aP. We first wish to present the following theorem. 

ThoptiOKn 1. / >' Let / denote a nonnegative, real-valued function of the positive 
integers such that 

^2 fW> = Bx6 + 0 O n ) as x -> oo, 
n <_x 

where B, 6, and n are constants with 0 < 6, r\ < 6. Then 

i ^ d b £ nn)n's = SB lo^(l +1)' 
Before proving Theorem 1.1, we need the following lemma. 
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Lowing 1.1: Under the hypothesis of Theorem 1.1, there exists a constant Y = Yf 
such that 

Z2 f(n)n~6 = 55 log x + y + OO6"1"1) as x -> °°. 

P/LOO_£.* This lemma is actually a special case of a result discussed in [3, 
p. 86]. However9 for the reader's convenience, we outline a direct proof here. 

Let 
pw = E/(n>« 

n <_x 
Then by partial summation (cf. [.2, Theorem 421]) , one obtains 

J^f(n)n'6 = F(x)x'6 + 6 I F(t)t~6"1dt 

= [Bx* + Q(x^)]x-s + 6 I [Bt6 + Qit^U^^dt 

= B + 65 log x + I (a?) + 0(xn-6) 9 
where 

= j - off t^-6'1dt\ = J - oo^-6), 
for some constant I. The lemma follows, with Y = 5 + T. 

Vtiooi o-fa ThdOKom 1.1: In. order to deduce Theorem 1.1,. first consider 

xm = (A + l)^ m. 

By Lemma 1.2 (us ing t h e convent ion t h a t Aq° - 1 be r e p l a c e d by 1 i f A = 1) , we 
have 

= V { 5 B log ^ + 1 ^ t - 1
 + 0(g«<n-«))l. 

/To ( Aq* - 1 j 

E f W r « = 65 £log ^ t ! > t ? t r ' + 0(1) 

f x iog( l + T) + ^gf1 " J 

Thus 

65 

-Io4-^)P0(1) 
= (rc + 1)65 l o g ( l + j ) + 0 ( 1 ) , 

s i n c e ( fo r o _> 1) , 

,?1
i4-^h?>-,>-o(i>-

Now l e t xm_1 <_ x <. xm. Then log x - t f z log q as m9 x •+ °°, and [ fo r #(n).> 0] , 

E ^(n) - E ^(n) ~ E ; ^(n)° 
n < a ; m . 1 , n e f f U ) n < a ; , n e J ? U ) n<arf f l ,netf(i4) 
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The asymptotic formula implies that 

l i m * 53 f(n)n-S m 6B log( l + l/A) m / l \ 
* — log x n£xf?zN(A)

J log 4 **\ A)9 

and Theorem 1.1 i s proved. 
We say that a function / o f pos i t ive integers has mean-value ( respect ively , 

logarithmic mean-value) a over a set T of pos i t ive integers if and only if 

x*°° n^x, neT 

I respectively9 a = lim - — — /J ^ I. 
\ a r — l o g 00n^n£T n J 

It is shown by Wintner [8, p. 52] that the existence of the logarithmic mean-
value over a set T follows from that of the mean-value over T and the values 
are equal. The converse is false. Applying Theorem 1.1, we have 

CotlolLaJtij 1.3: Let / denote a nonnegative, real-valued function that possesses 
the mean-value B Over all positive integers in the strong sense that there ex-
ists a constant r\ < 1 such that 

/3 f(n) - Bx + 0(^n) as x ->• °°. 
n <_x 

Then / possesses the logarithmic mean-value B log^Q + l/A) over N(A). 
A subset S of a set T of positive integers is said to have the relative 

togavitlnmio density"A in T if and only if 

If the function / of Corollary 1.3 is replaced by the characteristic function 
of the set T in the set N of all natural numbers, we obtain 

CoKotLcVUj 1..4: Let T denote a set of positive integers having natural density 
B in the strong sense that there exists a constant T) < 1 such that 

53 1 = Bx + OO:11) as x -> °°. 

Then the set I7(4) = TO/!/(A) has the relative logarithmic density log^(l + l/A) 
in T. 

2. APPLICATIONS TO SPECIFIC SETS AMV FUNCTIONS 

In addition to the set N of all natural numbers, the following natural ex-
amples of sets T satisfying the hypothesis and hence the conclusion of Corol-
lary 1.4 may be noted: 

(2.1) Let TmjT denote the arithmetical progression 

r9 r + m9 r + 2/7?, (0 <_ r < m). 
Then clearly 

E 1 = E 1 = r^-1-^! = " + 0(1) as^->^. 
n<_x, ne.TmtP r + km±x a 

(2.2) Given any integer k _> 2, let #rfc, denote the set of all k-fvee positive 
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integers, i.e., integers not divisible by any kth power rk f 1. (Thus N[2] is 
the familiar set of all square-free numbers.) Then it is known (see, e.g. , [3, 
p. 108]) that 

Y, i -rm + 0 (~1 A ) a s x ^ ~ > 
n<x,n£N,k, ^K^J 

w h e r e l*J 

« = 1 

(2.3) Let Tmyrtk = Tmtr H N[k]9 where TmtV and N^ are the sets defined above. 
If 77?, r are coprime, it is known (see, e.g., [4, p. 112]) that as x -> °°, 

n<x9neTmtPtk ^ ^ ^ pr ime p\m 

where £(&) is as before. 
Many naturally occurring arithmetical functions / satisfy the hypothesis 

and hence the conclusion of Corollary 1.3. Out of examples of such functions 
treated in books, we mention only two: 

(2.4) Let r(n) denote the number of lattice points (a, b) such that a2 + b2 = 
n. Then (see, e.g., [2, Theorem 339]), 

2^ r(n) = T\X + 0(x1/2) as x ->. °°. 

(2.5) Let a(n) denote the total number of nonisomorphic abelian groups of fi-
nite order n. A theorem of Erdos and Szekeres (see, e.g., [3, p. 117]) states 
that 

]T a(n) = x n 5(&) + 0(x1/2) asx-> «. 
fc=2 

Next we mention a few examples of concrete arithmetical functions / satis-
fying the slightly more general hypothesis of Theorem 1.1: 

(2.6) The Euler function 

<f>(w) = X .1 
?±n(rs n) * 1 

has the property that 

E 3x2 
cf)(n) = —— + 0(# log x) • as x -* °° 

n<_x 

(see, e . g . , [2, Theorem 330]). 
(2.7) The divisor-sum function 

a<n) = ]£d 

has the property that 

y^ a(n) = Ŷ -Tr2^2 + 0(# log x) as #'->«> 
n <.# 

(cf. [2, Theorem 324]). 

(2.8) Given any positive integer k9 let TmiI> denote the set of all kth powers 
of numbers in the arithmetical progression TmtV of (2.1). Then, 

£ i= £ i =±*1/,: + o(i), 
n <.*, neT^r n±xllk, nzTmtr 
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by (2.1). Thus Theorem 1.1 applies to the characteristic function of the set 
Tk in N. 

Finally, it may be remarked that the applicability of Theorem 1.1 carries 
over to the restrictions to Tmjr of arithmetical functions of the above kinds, 
when m, r are coprime. (For preliminary theorems that make such applications 
possible, see, e.g., [3, Ch. 9], [4, Ch. II], and Smith [6].) 

3. "SCIENTIFIC" VERSUS MATHEMATICAL EXPLANATIONS 
In [5] Raimi expresses some reservations about purely mathematical explana-

tions of the initial-digit phenomenon in numerical tables of empirical data and 
calls for a more "scientific" discussion (e.g., in terms of statistical distri-
bution functions). However, in this direction, general agreement does not seem 
to have been reached or even to be imminent. By way of contrast, even if it is 
theoretically correct to have done so, one might query whether such a problem 
would ever have been seriously raised in practice If it had not been for the 
nonexistence of certain desired natural densities. 

For, suppose that a detailed examination of "random" tables of numerical 
data was found to show that, in most cases, approximately 1/10.of the numbers 
considered end in a particular digit b e {0, 1, ..., 9}, or approximately 10 
of them end in a particular sequence of digits b± , 2?2, . .. , 2? e {0, 1, . .. , 9} . 
In view of the elementary example (2.1) above, surely very few people would be 
surprised by this or be led to call seriously for a "scientific" explanation, 
even though it is theoretically as legitimate to do so here as in the original 
problem. 

Although the nonexistence of natural densities does on first consideration 
seem to lend an element of confusion to the initial-digit problem, the preced-
ing remarks suggest that (unless overwhelming experimental evidence* warrants 
otherwise) it is perhaps nevertheless adequate for most purposes to accept an 
explanation in terms of one or more reasonable mathematical substitutes for 
natural density. In showing the quite widespread nature of this phenomenon in 
number theory, the earlier theorem and various mathematical examples perhaps 
lend further weight to this suggestion. After all, what can be scientifically 
interesting about the purely numerological properties of a list of street ad-
dresses, or areas of rivers, and so on? 
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*The status of Raimi's anomalous population data PP (n) [5, p. 522] is dif-
ficult to evaluate without further investigationf but his anomalous data V(n) 
do not seem surprising if one remembers that telephone numbers normally have 
favoured initial digits. 


