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A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS—III
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Washington State University, Pullman, WA 99163

1. INTRODUCTION

The simple continueq fraction expansions of rational multiples of quadratic
surds of the form [a, b] and [a, b, ¢] where the notation is that of Hardy and
Wright [1, Ch. 10] were studied in some detail in the first two papers [2] and
[3] in this series. Of course, for a = b = ¢ = 1, the results concerned the
golden ratio, (1 + /3)/2,and the Fibonacci and Lucas numbers since, as is well
known, (1 + v/5)/2 = [1] and the nth convergent to this fraction is Foo1/Fy
where F, denotes the nth Fibonacci number.

In this paper, we consider the simple continued fraction expansions of
powers of the surd & = [a@] and of some related surds. We also consider the
special case (1 + /5)/2= [i] since statements can be made about this surd that
are not true in the more general case.

2. PRELIMINARY CONSIDERATIONS
Let a be a positive integer and let the integral sequences

{fn}nz_() and {gn}nzo

be defined as follows:

f0=0’ f1=1’ fn=afn-1+fn—2:n22’ (1)
and
go = 2,9, =a, g, =ag,., +g9,_,,n>2. (2)
These difference equations are easily solved to give
n n
Fu = §__:_§_, n >0, (3)
va* + 4
and .
g, =" +%", n>0, (4)
where

£ = (a+v/a® + 4)/2 and T = (a-Va* + 4)/2

are the two irrational roots of the equation
z? - ax -1 =0. (5)
0f course, these results are entirely analogous to those for the Fibonacci
and Lucas sequences, {F,} and {L,}, and many of the Fibonacciand Lucas results
translate immediately into corresponding results for {f,} and ign}. For exam-—
ple, if we solve (3) and (4) for f, and g, in terms of g£" and £", we obtain

g, + fkfaz + 4

£ = 5 (6)
and gn _ fn /az + 4 ‘
g = 5 . (7N

Also, since

EE = 1,

it follows that

a+Va® +4 a-Va®+4 _a® - (@ +4) _ _
2 2

A

g% - @ + WFf;
-D" = gT" = 7 (®
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and also that
n
€”=%§ﬂ (9
We exhibit the first few terms of {f,}and {g,} in the following table and note
that both sequences are strictly increasing for n > 2.

ni{0]1 2 3 4 5

£l 0]1 a a® +1 a® + 2a a* + 3a® +1

g, 2lala®*+2|a®+3a|a* +4a® + 2| a® + 5a° + 5a

The following lemmas, of some interest in their own right, will prove use-
ful in obtaining the main results.

Lemma 1: For m > 1,
(a) [f,,Va* + 4] =g,, - 1,
(b)  [faon-1va® + 4] = gop -
Proog of (a): By (8),
(a2 + q)fén = g%n -4 > ggn - 2g2n +1
since 2g,, - 1 > 4 for n > 1. Therefore,
Fopva® +4>g, -1 (10)
for n > 1. On the other hand
Gon > gon = b = (@ + O,
an > f2n'a2 + 4 (11)

for all n. But (10) and (11) together imply that

[f,,Ya® + 4] =g, -1

so that

for n > 1 as claimed.
Proof of (b): Again by (8),
(az + 4)f.;n—l = ggn-l + 4

so that
fzn-l‘az +4 = /bin—l +4>g,, - (12)

Also, for n > 1,

Ggp-r T 1)? = gén—l +29,,., + 1> g%n—l +4 = (a® + 4)fgn-l

Gopy + 1> on_l/a2 + 4, (13)

so that

Thus, from (12) and (13),
(Fop-r/a® + 41 = g,, 4
and the proof is complete.
Lemma 2: TFor n > 1,
(a) [g,,va® + 4] = (@® + &) f,,,
(b) [g,,.1/a® + 4] = (@ + ©)f,,_ , - 1.
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Proof: The argument here is quite similar to that for Lemma 1 and is thus
omitted.

3. THE GENERAL CASE

The first two theorems give the simple continued fraction expansions of &"

and £7.
Theorem 3: For n > 1,
2n-1 _
(a) & = 9,01
2n _ _ _
(b) &" =1g, -1, 1,49, - 2I.
Proof: Since it is well known that [g,, ,] converges, we may set

1

T = [9211-1:I = an—l +E'

Thus,

x? -xg, | -1=0

and hence, using (8) and (6),
an—l + gin—l + 4 ngL—_l + f2n-l a2 + 4

x = 2 = 2

-1
= L;2271 ,

and this proves (a). Also, set

. ° _ 1
y=lg, -2 =1+ Ty
so that
¥* (g = 2) = yY(gy, - 2) - 1=0.
Then,

gpp = 2+ /(g2n - 2)%2 + 4(g,, = 2) g, -2+ Vgin -4
vy = 2092, = 2) B 2(g5, = 2)

and, again using (8) and (6),

. . 1 2(9271 - 2)
g,, =151, 9,,-21=g,, ~1+2=9g, -1+ —
2n 2n 2n Yy 2n gzn -2+ g;n _ 4
g2n + gin -4 g2n +f2n a2 + 4

_ = = 2n
2 2 &

as claimed.
Theorem 4: For m > 1,
(@) T 1 =[-1, 1, g,y = Ls gpy_1ls
(b) EZn = [0, 92n - 19 19 92n - 2]-
Proof: From (9) we have immediately that
‘g‘Zn = 1 and ”§2n—1 P 1 .
E‘Zn an-l

Since £%" = [gon = 1s i, gz; - 2] from the preceding theorem, it follows that
T2 = [0, 9on — 15 1, g,, — 2] as claimed. We also have from the preceding
theorem that

€2n—1 = [gz.n._l]

so that 1

an— 1

= [0’ gz.n-l]‘
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But it is well known that if o is real, a = [ag, a1, A3, ...] and ay > 1, then
-a = [-(a, + 1D, 1, a, -1, a,, ...]. Thus, it follows that

Fan-1 _ 1 .
gt =~ g1 =I[-1, 1, 9,, ., -1 9,,.,]

and the proof is complete.
Recall that two real numbers o and B are said to be equivalent if there
exist integers A, B, C, and D such that |4D - BC| = 1 and

_AB + B
“=Te+ 0D

We indicate this equivalency by writing o ~ B. Recall too that a ~ § if and
only if the simple continued fraction expansions of o and B are identical from
some point on. With this in mind we state the following corollary, which fol-
lows immediately from the two preceding theorems.

Conollany 5: 1f n is any positive integer, then £" ~ E",

Noting the form of the surds

g, + fpva® + 4 g, - f,/a® + 4

g 5 and E" = 5 :

it seemed reasonable also to investigate the simple continued fraction expan-
sions of surds of the form

ag, t f,/a®> + 4 af, t g va* + 4

2 3 2 E]

and so on. It turned out to be impossible to give explicit general expansions
of these surds valid for all a, m, and n, but it was possible to obtain the
following more modest results.

Theonem 6: Let a be as above and let m, n, and » be positive integers with
m=r=0 (mod 3) or mr # 0 (mod 3) if a is odd. Also, let {u,} be either of
the sequences {f,} or {g,} and similarly for {v,} and {w,}. Then

AUy + W Va? + 4 av, + w,/a® + 4

2 2
and
au, + w,/a* + 4 av, - w/a® + 4
2 - 2 )

Proof: We first note that, if a is odd, f;, = g, = 0 (mod 2) if n = 0 (mod
3) and f, 2 g9, =1 (mod 2) if n # 0 (mod 3). Thus Uy * v, = 0 (mod 2) if and
only if m = » = 0 (mod 3) or mr Z 0 (mod 3). To show the first equivalence,
let A =1, B=a(up - v»)/2, C =0, and D = 1. Then B is an integer, since
either a or u, - v, is divisible by 2 by the above. Moreover,

av, + w,Ya® + 4 av, +w,/a® + 4  au, - vy)

A - 5 *B 1~ 5 + 5
avy + w,Ya® + 4 avy + w,va’ + 4
c - . +D 0 - 5 +1

au,, + wn¢a2 + 4

2 5
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and this shows the first equivalence claimed, since [4D - BC[ = 1. Since the
proof of the second equivalence is the same, it is omitted here.

Corollary 7: 1If m and n are positive integers, then the surds in the following
two sets are equivalent:

afy + g,/a" + 4 af, - g /a® + 4

(a) 5 , 5 ,
ag, + g,/a* + 4 ag, - g va* + 4
2 2
and ag, + f,/a* + 4 ag, - f/a" + 4
(b) 3 , 5 ,
af, + f/a® + 4 af, - f/a® + 4
2 ’ 2 ‘

Proog: The first of the above equivalences follows immediately from the
second equivalence in Theorem 6 by setting r =m, u, = f,,, and w, = g, and the
others are obtained similarly.

Theorem §: Let a be as above and let m > 0 and n > 2 denote integers. Also,
let ¢ = af, + (a* + 4)f, and y = ag, + (@* + 4)f,. Then

af, +g,/a" + 4 ag, + g,/a® + 4

3 = [ags @ys +ees ap] and 3 = [bys Qys soes Ayl
where the vector (a;, a,s «.., d,.;) is symmetric and
ay = 2a, - af, = 2by, - ag,.
Also
_af‘m+(a2+4)f'n—b_x_b . _agm+(a2+4)fn—a_y_c
%o = 2 STy e T 2 52
where
b=04if n = x = 0 (mod 2),
b 1 if x = 1 (mod 2),
b=2ifn-1=Z2 =0 (mod 2),
e 0if n=y =0 (mod 2),
c=11if y =1 (mod 2), and
c=2ifn-1=y =0 (mod 2).

Proof: Let v = (af, + gn/az + 4)/2, Then, by Lemma 2,

|:afm + g, /a? + 1 i:afm + [g,/a® + 4}1'
[v]l =

i

%o ) 2
[afm + (a® + 4)fn]
s n even, n > 2
2
[afm + (a® + &)Ff, - 1]
s, n odd, n > 2
2
af, + (@ + 4)f, - b
= 5 s

where it is clear that
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b=0if n = x = 0 (med 2),
b=14if x =1 (mod 2), and
b=24ifn-1=%x =0 (mod 2).

A

Thus g, is as claimed. Moreover, 0
it follows that

vV —a, <1, so if we set v; = 1/(v - a;),

v, > 1. (14)
Taking conjugates, we have that
v, = L = = (15)
af, - gu./a® + 4  af, + @* +8)f, -b (@ +8&Ff, - b +g,/a® + 4
2 - 2
and it is clear that
-1 <V, <0, (16)

since g and n are both positive. But (14) and (16) together show that v; is
reduced and so, by [4, p. 101], for example, has a purely periodic simple con-

tinued fraction expansion [a;, a,, ..., ap]. Thus
af, + gn/az + 4 . .
Vo= 5 = [ay, vi] =1ay, a;s ays s Ayl (17)

On the other hand, again by [4, p. 93],

-51- = [Gps Gp_ys oees Gyl (18)
But then 1
L @+ - b+ g/t 4
-3 = 5
af, + gva* + 4 af, + £, @ +4) ~b 2af,
= 3 + 3 )

v +a0 - afm = [Zao - afm’ als azs see al/’]-

Comparing (18) and (19), we immediately have that 2a, - afy, = ap, G; = Gu_4,
Gy = Up_ps es+5 Qp_q1 = ay. This completes the proof for v. The proof for U =
(ag,, + g,/a® + 4)/2 is similar and is omitted.

The following theorem is similar to Theorem 8 and is stated without proof.

Theorem 9: Let a be as above and let m > 0 and n > 2 denote integers. Also,
let x = af, +g, and y = ag, + g,. Then

af, + fu/a* + 4 . ag, + f,/a* + 4

5 = [cys Cys +v+» Cpl and 3 = [dys Cys =evs Cpl

where the vector (¢;, C,5 «.., Cp-,) 1is symmetric and

ey = 2ey ~- af, = 2dy - agy.
Also
af, +g, - b % - b y ag, + 9, - ¢ y-c
o = 2 STz % T 2 T2

where

b=04ifn-1=x=0 (mod 2),

b=14if x = 1 (mod 2),

b=2dif n=Zx =0 (mod 2),
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e=0ifn-1=Zy =0 (mod 2),
c=11if y = 1 (mod 2), and
e=21if n =y = 0 (mod 2),

Theorem 10: Let m, n, and a denote positive integers and let {u,} and {v,} be
as in Theorem 6. Also, let

au, + v,/a® + 4

5 = [ags dys «vvs dpl.

(a) 1f a, > 1, then
7
aup - v,Ya” + 4
2

(b) If @, =1, then

=[-ay +aum -1, 1, a = 1, @,y «ovs dp, ;1.

AUy = v Va" + &
2
Proof of (a): Let n = (aum + v,/a® + 4)/2. Then by hypothesis,

N = [ags dys oevs Gl

= [~a, + aun - 1, a, + 1, a ey Aps Ay, Ayl

P

and
1 . .
T =[a,, ..., az, a; 1.
n - a
But then . .
[-ag +aupm = 1, 1, ay = 1, Qyy eeey Qpy Q1]
=-a, +aup - 1 + L i
1+ 1
a, -1+ T
1 -a
n-ao 1
= aum -1
aum - uy/a® + b
- 2
as claimed.
Proof o4 (b): If a, = 1, the above analysis still holds except that a; - 1

= 0, so that we no longer have a simple continued fraction. But then, we im-
mediately have that

QU - v,/a’ + 4

7 = [=ay + aupm = 1, 1, 0, dyy vues Ay ]

= [“CZD + au, — 1, 1, 0, a23 Cl3, vees dps al’ a2]

, Floag, «ovs ays a)s az]

[~a, + aum - 1, a
and the proof is complete.

Interestingly, it appears that the integer r in the above results is always
even but we have not been able to show this. Also, while it first seemed that
r was bounded for all a, m, and n, this now appears not to be the case. For
example, if @ = 4 and we consider the related surd, f, + gn/g, r is sometimes
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quite large and appears to grow with » without bound. On the other hand, if
a =2, and we consider the related surds, f, + gn/f'and Im + 9,72, it can no
doubt be shown that r equals 2or 4 according as n is even or odd, and that for
fm *+ f,Y2 and In T+ f;%i} r equals lor 2 as n is odd or even.

4, SPECIAL RESULTS WHEN a = 1
Of course, all the preceding theorems hold when a = 1, in which case

E=(1+V5/2, f, =F,, and g, = L,

for all n. On the other hand, in this special case, far more specific results
can be obtained as the following theorems show. Note especially that through-
out the remainder of the paper we use m and kK to denote a positive integer and
a nonnegative integer, respectively.

Theonem 11: 1If 3Xm and n = 2 + 6Kk or 4 + 6k, or if 3|m and n = 6 + 6k, then

Fp + Ln‘/g Fn + 5F, .
= F,, 5F,

2 2
and Ly + L,Y5 |Lnm+5F, | .
5 = 5 Fns 5Fy|.

Prood: It is immediate from the hypotheses and Theorem 8 that

Fy + L,V/5 | F, + 5F, .
5 = > 5 Qis sees Qp

and that Ly + Lp/5  [L, + 5B,
2 = 2 s Ay es dp
Let
X = 1
[T S
n
Then 5F, + x

x®> + 5F,x - 5 = 0,

and, since x is clearly positive and 5F3 + 4 = L2 is a special case of (8),

-5F, + Y/25F2 + 20  -5F, + L,/5
x = 5 = 5 B

But then,
[Fm + 5F, : -j] F, + 5F, -5F + L,/5 F + L,/5
a5 s ns 9 =

2 2 + 2 = 2 3

and similarly,

L, + 5F, . . Ly + L,/5
T Fus S| =

as claimed.

Theorem 12: 1f 3f/m and n = 5 + 6k or 7 + 6k, or if 3|m and n = 3 + 6k, then
F+L/‘ F, + 5L, .
slan'_zs )

Ly + L/5 [L + 5F, - 2

and

,i)Fn_zs SSFn—]
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Proof: Again it is immediate from the hypotheses and Theorem 8 that

F, + L,/5 [F,,, + 58, - 2 J
= r

5 5 5 Qys eees A

and that

L,+1L,/5 |L,+5E -2 .
5 = 5 s s eees Gple.

Then, since n is odd, we have from Theorem 3 of [2] that

. . L, + L,/5
@=1[1,F -2,1, 5, -2] =——p— -1 +1
Thus,
E, + 5F, - 2 ) Fp + 5F, - 2
—— L, Fy =2, 1, 5F - 2[=———— 4z
Fp + 5F, =2 L, +Ly5-2L,  +2
= 2 * 2
Fnp + 58, = 2 =5F, + L,/5 + 2
= 2 + 2
Fn + L,V5
. Tz
Similarly,
Ly + 5F, — 2 . Lp+ L,V5
——— L, B -2, 1, 5B - 2| = ——5—

and the proof is complete.

Theorem 13: If 3|m and n = 6 + 6k or 9 + 6k, or if 3|m and n = 4 + 6k, 5 + 6K,
7 + 6k, or 8 + 6k, then

F, + L,/5 L+ L,/5 )
-———2————=[a0, al, ...,ap] and __i——=[b°’ al, ---,ar]
with ay = (F, + 5F, - 1)/2, by = (Im + 5F, - 1)/2, ayp = 5F, - 1, and where the
vector (dy, ..., An_;) is symmetric.
Proo4: This is an immediate consequence of Theorem 8.

The only surds of the form (F, + Ln/g)/Z and (L, + Ln/g)/Z not treated by
the above theorems are when 3*m and » = 1 or 3, and when 3im and n = 1 or 2.
For these cases, the results are as follows.

Theorem 14:
(a) If SXm, then

2

P, +0,/5 [F, +1 |
= 2 3 1 s
Ly +0,Y/5 |Lp +1 |
= 2 3 l 9
+
2

2
F, + L,/5 |F,

=

2
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and =
Ly + L5 |Lp+7 | ;
5 = 7> 1, 34, 1, .
(b) 1f 3|m, then
F, +LV/5 [E, +2 )
2 = s 8’ 2 B
L, +Ly5 [r,+2 . .
2 = s 8’ 2 )
Fp +L,/5 [E, +6 )
7 = 2’29194’1’2569
and L, +L,/5 [L,+6 )
> = 5 s 2, 1, 4, 1, 2, 6.
Theorem 15:
(a) If 3/m and n = 4 + 6k or n = 8 + 6k, or if 3|m and n = 6 + 6k, then
Fon -L,/5 |F, - F, -2 ..
2 = 3 ,1’Fn'1’5Fn’Fns
and Ly = L5 [Ln-F, -2 o
5 = 5 , 1, F, =1, 58,, F,|.
(b) If 3fmand n =5 + 6k or 7 + 6k, or if 3|m and n = 9 + 6k, then
F, - L,/5 [F, - 5, . .
5 = 5 Fy = 1, 1, 5F, = 2, 1, F, - 2/,
and Ly - L,/5 |[L, - 58, ) .
5 = s F, = 1, 1, 5F, - 2, 1, F, - 2[.
(c) Let (Fy + Ln/5)/2 = [ay, dy5s +--5 dpl as is always the case from Theorem 8.
If 3,fmandn=6+6k, or if 3]mandn=4+6kor8+6k, then
F, - L,5 |Fpn~5F, -1
3 = 3 s Gy + 1y dys vy Aps Ays Ay,
and Ly = L,/5  [Ln - 58,-1
5 = 5 ,a2+1, Ags sees Qps Ays Ayl
L
And if 3fm and n = 9 + 6k, or if 3|m and n = 5 + 6k or 7 + 6k, then
F, - L,/5 F, - 58, -1 . .
5 = 5 s 1, al—l, Qys eees Aps A
and Lp - Ly/5 [Lp-5F, -1
7 = 3 s 1, al—l, Ays wves Qyps Agfe
The preceding theorem omits the cases when n = 1,2, or 3. These cases are

treated in the following result, which is also stated without proof.

Theorem 16:
(a) 1f 3fm, then
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and

1f 3|m, then

and

By ~0,/5 [E, -3 :

2 = 2 k] 2’ 1 s
L, -10,/5 [, -3 .

2 = 2 s 2’ ]- L]
B, - L,/5 [E, -7 X

5 =|l—— 6, 1
Iy - LV5 [Ln -7

7 |7z %!
Fp -1/5 [F, -9

3 =T 3
Lp=1L/5 [Ly-9

2 - 7 3
Fp = LY5 |Fp -4

7 |7 L7
Lp-L,/5 [L, -4

2 - 7 b7
By -L/5 [F, -8

2 - 7 - bl
Lm-1vV5 [L,-8

2

5 == 1. 1
F, - 5,/5 [F, - 10

2 = 2 3 1’
Lyp-12,5 [Ly- 10

2 - 7 1

We close with two theorems which give

&, * F,V/5)/2 for all positive integers m and 7.

stated without proof.
Theorem 17
(a) If 3)m and n

E. + F,/5

1 + 6k or 5 + 6k, or if 3[m and 7

m
and 2

F, + L, .
2 > Ln

L + F,/5
5 =

(b) If 3Jm and n
F, + F,/5

2 + 6k or 4 + 6k, or if 3]m and »n

2
and

2

1, 8, éJ.

the expansions for (F,
Again, these

3 + 6k, then

6 + 6k, then

(Pt D, -2
’]-:Ln—z

173

+ F,/5)/2 and
theorems are
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L,+FY5 |Lp+L,-2 | .
= s 1, L, - 2].

2 2
(¢) Let (B, + F,V/5)/2 = [ag, ay» «-.5 a 1. If 3fmand n = 3 + 6k or 6 + 6K,
or if 3|m and n = 2 + 6 + 6k, 5 + 6k, or 7 + 6k, then

k
Ln
s Gys sees Ay ys Ly = 1

Ly + E, /‘ L, + 1L,

m

5 , dl, vees Gy ys Ly - 1]

and the vector (al, N ar_l) is symmetric.

(d) 1f 3|m, then
Fp +FV5 |Fp+2
= , 8, 2

and

2 2
and
Ly +FY5 |L,+2 i3
> = 5 . 8, 2].
Theorem 18
(a) 1f 3Jm and n = 5 + 6k or 7 + 6k, or if 3|m and n = 3 + 6k, then
F, - F,Y5 |F, - L,~-2 ]
5 = 5 » 1, L, -1, L,
and - _
L, - F/5 |Ly-1I,-2 ]
5 = | 5 , 1, L, -1, L,i.
(b) If 3/m and n = 2 + 6k or 4 + 6k, or if 3|m and n = 6 + 6k, then
L Em/g }% - Ly . . T
5 = 5—s Ly =1, 1, L, -2
and - -
L,-FV5 |L,-1L, . .
5 = 5~ Ly = 1, 1, 1,/ -2
(e) Let )
(Fy + F,/5)/2 = [ag, dys +ees Gyl
and let

(L + Ly/5) 12 = [Bgs Qys eens apl.
If BXm and n = 3 + 6k, or if 3]m and n# = 5 + 6k or 7 + 6k, then
E, = L,/5

5 =lay —ap, -1, a, + 1, aGgs «ees Qs ays a,l

and

—————=1[by —ap -1, a, + 1, Ays ey Aus ays dyl.
2 2 3 1

If 3fm and n = 6 + 6k or if 3|m and n = 4 + 6k or 8 + 6k, then
E, - L,/5

———=lag - ar -1, 1, 1, dys e aps 4]

and
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L, - L,/5
————=1Iby ~a, -1, 1, 1, &, ..., a,, &,].
(d} 1If 3)m, then
F, = F5 [F, -3 .
> = 5 2, 1
and -
L,,,—Fl/s‘_ Lp=-3 .
3 = > 2, 1}.
If 3|m, then
F, ~F/5 FE, -F,y/5 [F, -4 ..
2 - 2 - 2 » ls 79 2:8
and
Ly=FV5 F, -Fy5 [L,-4 L
2 = 2 = 2 913 79 2:8
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BENFORD'S LAW FOR FIBONACCI AND LUCAS NUMBERS

LAWRENCE C. WASHINGTON
University of Maryland, College Park, MD 20742

Benford's law states that the probability that a random decimal begins (on
the left) with the digit p is log,,(p + 1)/p. Recent computations by J. Wlod-
arski [3] and W. G. Brady [1] show that the Fibonacci and Lucas numbers tend to
obey both this law and its natural extension: the probability that a random
decimal in base b begins with p is logp(p + 1)/p. By wusing the fact that the
terms of the Fibonacci and Lucas sequences have exponential growth, we prove
the following result.

Theonrem: The Fibonacci and Lucas numbers obey the extended Benford's law. More
precisely, let b > 2 and let p satisfy 1 < p < b - 1. Let 4p(/N) be the number
of Fibonacci (or Lucas) numbers F, (or L,) with n < N and whose first digit in
base b is p. Then
, 1 + 1
Lim 4, @) = Togy(B).

Proof: We give the proof for the Fibonacci sequence. The proof for the
Lucas sequence is similar.

Throughout the proof, log will mean log,. Also, {x> = x - [#] will denote
the fractional part of x.

Let o = %(1 + /5), so F, = (a* - (-a)"")//5. We first need the following:

Lemma: The sequence {{n log a)};.; is uniformly distributed mod 1.
R— N



