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Note that, by (4.4) and (4.5), (7.6) holds for all normegative p. Substituting 
from (7.6) in (6.1) and (6.2)'and evaluating coefficients of xm, we obtain the 
following two identities. 

(P + <7<P;?) = pT™ + qT«l + pq £ Z^^-V-i. m-J 
s=0 j=0 

r - l m-l 

~ P<?£ E ^ V - V - i , „-,•-! (P > 0, q > 0), 
s = 0 j = 0 

r - 1 • m 

( r + 1)Tiw> . ( r + 1 ) r w + p ^ ^ ( r _ s)T^T«i_i>m_. 
s = 0 j = 0 

r - 1 m - l 

- p V Y (r - s)T}p)Tiq)
 1 . n (p > 0). 

In particular, for q = 0, (7.8) reduces to 
r-1 m 

(7.7) 

(7.8) 

r-l m-l 

Z-^ L-d\n) r - s - l , m - j - l 
s=0 J= 0 ^ / 

r-l m-l 

P E Emc.' - i . , , - ,^ (p>°>-
J = 

We remark that (6.1) is implied by (6.2). To see this, multiply both sides 
of (6.2) by q9 interchange p and q, and then add corresponding sides of the two 
equations. Similarly, it can be verified that (7.3) is implied by (7.4) and 
(7.7) is implied by (7.8). 
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A sequence of integers A = {a1 < a2 < • • • < ak <^ n] is said to have property 
Pr (n) if no a^ divides the product of v other a's. Property P(ji) means that no 
at divides the product of the other aTs. A sequence has property Q(n) if the 
products a^aj are all distinct. 

Many decades ago I proved the following theorems [2]: 

Let A have property P1 (i.e., no a^ divides any other). Then 

7 \ n + ll 
max K = — y — • 

The proof is easy. 
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Let A have property P2 then [ir(n) is the number of primes not exceeding n] 

(1) 7i(n) + c-Ltt^Clbg n)~2 < max /c <_ ir(n) + <32n2/3(log n ) ~ 2 . 

The cfs will denote positive absolute constants not necessarily the same at 
each occurrence. We will write Pr instead of Pr (n) if there is no danger of 
confusion. 

Probably there is a c for which 

(2) max k = ir(n) + (c + 0(1) )n2/3 (log n ) ~ 2 

but I could never prove (2). 
Assume next that A has property Q. Then 

(3) 7T(n) + c 3 n 3 / 4 ( l o g n ) " 3 / 2 < max k < i\(n) + c^n3 / I f ( log n)"2/\ 

Here too I c o n j e c t u r e d 

(4) max k = TT(n) + (c + 0(1) )n3/ l*(log n ) ~ 3 / 2 . 

I could never prove (4), which seems more difficult than (2). 

In this note I consider slightly different problems. Denote by Sn the set 
of positive integers not exceeding n. Observe that Sn can be decomposed into 

lloe; Yi\ 1 + \--.—&—y sets having property P1. To see this, let S consist of the inte-

[ Yl~\ r VI "I iloS Yl\ 

— - \ < a< —:—r . The powers of 2 show that 1 + \-~ 
2\J " L ^ J Llo£ 

>g 2. 
is best possible. 

Denote by fr (n) the smallest integer for which Sn can be decomposed as the 
union of fr(n) sets having property Pv and gin) is the smallest integer for 
which Sn can be decomposed into gin) sets having property Q. We just observed 

fAn) = 1 + I-—^-r- . We prove J 1 Llog 2J 

T/xeo/tem 1 : 
— ' 1/2 

(5) C l J _ < / 2 ( n ) < 2^2. 
1/3 

(6) c - ~ ^ < g(n) < 2n112. 

The upper bound in (5) and (6) follows immediately from the fact that 

m\ (m + ix) (m + i2) if I ± i1 <_ i2- < m1/2. 

Now we prove the lower bound in (5). The proof will be similar to the proof 
in [2]. Let S' be the integers of the form 

(7) pu, u < yn1/2
5 n1/2 < p < 2nl/2. 

Clearly 

(8) \S'] > c 
log n 

< ak be a subset of S^ which satisfies property P2. 
We prove that then 

1/2 1/2 

(9) k<ILL+0Jll^<n^. 
J 2 log n 

(8) and (9) clearly complete the proof of (5). 
Thus we only have to prove (9). Put ai = Pi^i where p i and ui satisfy (7), 

< ak a bipartite graph where the white 
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vertices are the u's and whose black vertices are the primes p. . To a^ = p-u-
corresponds the edge joining pi and u^. This graph clearly cannot contain a 
path of length three. To see this, observe that if a1 = p±uis a2 = u1p2, and 
a3 = p2u2 is a path of length three then a2\a1a35 which is impossible. A bi-
partite graph which contains no path of length three is a forest and hence it 
is well known and easy to see that the number of its edges is less than the 
number of its vertices. This proves (9) and completes the proof of (5). 

By a more judicious choice of the black and white vertices the lower bound 
of (5) can be improved considerably. A well known and fairly deep theorem of 
mine states that the number of integers m < n of the forms u * V9 where both u 
and v are not exceeding n1'2 is greater than 

ft 1 1 + log log 2 
— , a = 1 - -—-(log ri) B 

for n > nQ(e), and that this choice of a is the best possible [3]. This imme-
diately gives9 by our methods 

f2(n) > 
„l/2 

(log ft) 

We do not pursue this further, since we cannot at present decide whether 

f2(n) = 0(n1/2) 

is true. The following extremal problem, which I believe is new, is of inter-
est in this connection: Let 1 <_ a1 < • • • < ar £ ft and 1 <_ b± < - ° - < bs <_ n be 
two sequences of integers. Denote by 1 _<_ u± < • e a < ut <_ n the integers not 
exceeding n of the form a^bj* Put 

h(n) t 
v + sy 

where the maximum is extended over all possible choices of the a?s and Z?fs. 
Our proof immediately gives f2(n) >_ h(n) . I can prove 

n1/2 

h(n) < r- for some 3 > 0. 
(log ny 

It would be interesting if it would turn out that for some 3 < a, 

h{n) > — ^ — — . 
(log n)6 

The upper bound of (6) is obvious, thus to complete the proof of Theorem 1 
we only have to prove the lower bound in (6). The proof will again be similar 
to that of [2]. Let S% be the integers of the form 

(10) pu < n , u < \\nll\ n2/3 < p < 2ft2/3. 

Clearly (by the prime number theorem or a more elementary theorem) 

on 
(ID \S"\ > log n" 

Now l e t a1 < - 8 e < ak be a subse t of S% having p r o p e r t y Q ( i . e . , a l l t he 
p r o d u c t s ai<2j a r e d i s t i n c t ) . We prove 

(12) k < n2/3 + c ~± . 
log ft 

(11) and (12) clearly give the lower bound of (6); thus to complete the proof 
of our Theorem we only have to prove (12). Consider a bipartite graph whose 
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white vertices are the primes n2/3 < p < 2n2/3 and whose black vertices are the 
integers 

u < \n112. 

To each a -pu, we make correspond the edge joining p to u. This graph cannot 
contain a Ch9 i,eos a circuit of size four* To see this9 observe that if p , 
p25 ul9 and u2 are the vertices of this Ch then p1w1, px^2, P2

U\> an(* ?2U2 a r e 

all members of our sequence and 

PlWl ' ?2W2 = PlU2 S P2W1» 
or the products ata^ are not all distinct, which is impossible. 

Now let Vi be the valency (or degree) of pi (n2/3 < pi < 2n2/3) . We now es-
timate k9 the number of the edges of our graphs as follows: The p.fs with v^ = 1 
contribute to k at most 

n2'3 

S < C -r— . 

log n 

Now let p , . .., p be the primes whose valency v^ is greater than 1.. Observe 

Z tG>([n1,,])^»2" 
—n 1 ' 3 \ is the number of u?s„ If p. is joined to v^ ufs5 form the ( J] pairs 
of ufs joined to p. . Nows if (13) would not hold5 then by the box principle 
there would be two p's joined to the same two u'ss ieea9 our graph would con-
tain a C.9 which is impossible* Thus (13) is proved* 

From (13) we immediately have 

min(z;̂  - 1) (14) £ Vi < . ,n~" ,s < n2/3 

i = l 

(14) clearly implies (12) and hence the proof of our Theorem is complete. 

I expect g(n) < n(1/3 + e) but have not even been able to prove giri) = o(n1/2). 

Recall that fr(n) is the smallest integer for which Sn can be decomposed 
into frin) sets having property Pv . We have 

Th&otim 2: For every e > 09 

n v < fp(n) < ovn r 

The proof of Theorem 2 is similar to that of Theorem 1 and will not be given 
here. Perhaps 

fr(n) = o ( n 1 " ) e 

Finally, denote by F(n) the smallest integer for which Sn can be decomposed 
into F(n) sets {A^ , 1 <_ i <_ F (n) 3 having property P. 

Using certain results of de Bruijn [1], I can prove that for a certain ab-
solute constant c 

(15) F(n) = n exp {(-o + 0(1)) (log n log log n)1/2V 

We do not give the proof of (15) here. 

Now I discuss some related results and conjectures. Let a1 < a2 < • a " < cck 
be the largest subset of Sn for which the sums ai + a • are all distinct. Turan 
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and I proved that [4] 

max k = (1 + o(l)n1/2 

and we in fact conjectured 

(16) max k = n1'2 + (9(1). 

(16) is probably deep, and I offer $500 for a proof or disproof. 
I conjectured more than 15 years ago that if b1 < • ••• < bn is any sequence 

of integers then there always is a subsequence 

bix < '" < his , s >_ (1 + o(l))nll2
9 

so that all the sums bi- + bi- are distinct. Komlos, Sulyok and Szemeredi [5] 
proved a much more general theorem from which they deduced a slightly weaker 
form of my conjecture, namely s > on112 for some o < 1. Denote by m(n) the lar-
gest integer so that for every set of n integers b± < ••• < bn one can find a 
subsequence of m(n) terms so that the sum of any two terms of the subsequence 
are distinct. Perhaps m(n) is assumed for S . 

Recently I conjectured that if b1 < b2 < • •• < bn is any sequence of n in-
tegers, one can always select a subsequence bi1 < ••• < bia9 s > (1 + o(l))n112 

so that the product of any two b^1 s is distinct. Straus observed that with 
s > on1'2 this follows from the Komlos, Sulyok and Szemeredi theorem by a method 
which he often used. One can change the multiplicative problem to an additive 
one by taking logarithms and then, by using Hamel bases, one can easily deduce 
s > on from the theorem of Komlos, Sulyok and Szemeredi. 

Let 1 <. a1 < ••• < ak <_ n be any sequence of k integers, not exceeding n. 
Denote by F(k9 n) the largest integer so that there always is a subsequence of 
the afs having F(k9 ri) terms and property P1. It is easy to see that 

(17) F(k, n) _> k 

1 + log n 
and the powers of 2 show that (17) in general is best possible. It is not dif-
ficult to see that if k >_ on then F(k9 n) >_ g(c)n and the best value of g{c) 
would be easy to determine although I have not done so. It is further easy to 
see that g(o)/c •+ 0 if c -»• 0. If k < n1~e

9 then (17) gives the correct order 
of magnitude except for a constant factor a , and in general the determination 
of F(k9 n) is not difficult. 

Many further questions of this type could be asked. For example, denote by 
F2(k9 n) the largest integer so that our sequence always has a subsequence of 
F2(k9 n) terms having property P2. F2(k9 n) seems to be more difficult to han-
dle than F(k9 n). It is easy to see that 

F2(k9 n) > ^(2n1/2)"1, 

but perhaps this can be improved and quite possibly for every o > 0 

F2 (on, n) /n1/2 -* °°. 

The following question seems of some interest to me: Let 

1 <. a1 < • • • < ak <_ n. 

What is the smallest value of k that forces the existence of three (or s) afs, 
so that the product of every two is a multiple of the others? In particular, 
is it true that if k> on there always are three a's so that the product of any 
two is a multiple of the third? At the moment I cannot answer this question, 
but perhaps I overlooked a trivial argument. 

To end our paper, we state one more question: What is the smallest k = kn 
for which F2(k9 n) >_ 3? In other words: Determine or estimate the smallest 
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k = kn for which for every 1 <. a1 < • • • < ak <. n there are three a's, aix, d^ 9 
aiz so that the product of two is not a multiple of the third. I have no sat-
isfactory answer, but perhaps again I overlooked a trivial argument. 

On the other hand, I can get a reasonably satisfactory answer to a slightly 
modified question. 

ThtQJtQjn 3: Let I <_ a± < ••• < ak <_ n be such that the product of every two a?s 
is a multiple of all the others. Then (exp z - ez) 

(18) max k = expf(1 + o(l))log 2 • — log n(log log ri) _ 1 ) . 

We only outline the proof of Theorem 3. Let 2, 3, ..., p be the primes not 
2 

exceeding (1 - e)— log n. Let the afs be the integers of the form 

(19) uf\p 
i-i ^ 

where u runs through the integers that are the product of [s/2] or fewer of the 
pfs. From the prime number theorem, we easily obtain that all the afs are not 
exceeding n. To see this, observe that by the prime number theorem 

and 

n P. = exp(d + 0(1)) (l - e ) | log n\ 

M < ( l l p V + 0 ( 1 ) < exp((l + 0(i))i2SJLj. 

Further, by the prime number theorem, 

s > (1 - e)-j log n(log log n ) " 1 , 

and the number of u?s is not less than 2s"1, which proves the lower bound in 
(18). 

Now we outline the proof of the upper bound of (18). Let p1, . . . , ps be 
the prime factors of 

k 

i = l 
Since a^aj is a multiple of all the other afs, all but one of the a's, say a(J), 
are multiples of p. , 1 <_ J: ^_ s. Disregarding these a(j)!s, we assume that all 
the axs are multiples of all the Pj!s. By the same argument we can assume that 
for every p^ there is an a^ so that every ai divides p̂  with an exponent xit j, 
°̂ j 5L xi, Q S. 2aj. From this and the prime number theorem we obtain by a simple 
computation, the details of which I suppress, the upper bound in (18). 
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