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The U.S. Constitution mandates that "Representatives shall be apportioned 
among the several states according to their respective numbers. . . . The num-
ber of representatives shall not exceed one for every thirty thousand, but each 
state shall have at least one representative." Implementation is left to Con-
gress. 

Controversy arose over the first reapportionment. Congress passed a bill 
based on a method supported by Alexander Hamilton. President George Washington 
used his first veto to quash this bill, and an apportionment using Thomas Jef-
ferson^ method of "greatest divisors" was adopted. This matter is still con-
troversial. Analyses, reviews of the history, and proposed solutions are con-
tained in the papers [3], [4], and [5] in the American Mathematical Monthly. 

The purpose of this paper is to cast new light on various methods of pro-
portional allocation in natural numbers by moving away from the application to 
reapportionment of the House of Representatives after a census and instead con-
sidering the application to division of delegate positions among presidential 
candidates based on a primary in some district. 

1. THE MATHEMATICAL PROBLEM 

Let N = {09 1, 2, ...} and let W consist of all vectors V = (v19 ..., Vn) 
with components v^ in N and dimension n > 2. Let the size of such a V be 

\V\ = v1 + ... + vn. 

An allocation method is a function .F from Nx W into W such that 

F(s, V) = S = (sl5 ..., sn) with |s| = s. 

We will sometimes also write F(s, V) as F(s; vl9 ..., Vn). S = F(s9 V) should 
be the vector in W with size s and the same dimension as V which in some sense 
is most nearly proportional to V. 

A property common to all methods discussed below is the fairness property 
that 

si >. Sj whenever Vi > V- . (1) 

Note that s^ > SJ can occur with v^ = VA since the requirement that each s^ be 
an integer may necessitate use of tie-breaking (e.g., when all v- are equal and 
s/n is not an integer). 



234 PROPORTIONAL ALLOCATION IN INTEGERS [Aug. 

2. TYPES OF APPLICATIONS 

For reapportionment of the U.S. House of Representatives, at present n=50, 
s=435, the Vi are the populations of the states (say in the 1980 census), and 
s^ is the number of seats in the House to be alloted by the method to the ith 
state. Proportional allocation could also be used to divide congressional com-
mittee positions among the parties or to allot Faculty Senate positions to the 
various colleges of a university. 

We want to get away from the relatively fixed nature of the dimension n and 
the constitutional requirement that each Si _> 1 in the reapportionment of the 
House problem and therefore, in the main, will use language and examples appro-
priate for the application to presidential primaries. 

3. TWO EXTREME METHODS 

The "plurality takes all" method P has 

P(s; v19 ..., vn) = (al9 ..., sn) 

with sk - s if vk is the largest of the v^ and Si = 0 for all other i. This 
method is used in elections in which s = 1, e.g., elections for mayor or gover-
nor. It is also used in allocating the total electoral vote of a state based 
on the vote for president in general elections. This method is certainly not 
one of "proportional" allocation. 

Perhaps at the other extreme is the "leveling" method 

L(s; v19 ..., vn) = (s19 ..., sn) 
in which the s^ are as nearly equal as possible. That is, if s = qn + r with 
q and r integers such that 0 <_ r < ns then s^ - q + 1 for the r values of i with 
the largest components Vi and &i - q for the other values of i. This is the 
method used to allocate the 100 seats in the U.S. Senate among the 50 states. 
It too is not a method of proportional allocation. 

4. ONE PERSON, ONE EFFECTIVE VOTE 

We find it helpful to preface our discussion of proportional allocation 
with the consideration of a proportional representation election to choose 
people for a city council, or a school board, or to represent the electorate in 
some other way. As a means of achieving proportional representation it is de-
cided to give each voter only one vote; the s candidates with the highest votes 
will be declared elected. 

Each voter has a favorite candidate but a vote for the favorite may be a 
wasted vote because that candidate is so strong as not to need the vote in or-
der to- be elected, or is too weak to be in contention. If enough electors 
change their votes in fear of such wastage, the results may be a serious dis-
tortion of their wishes and may involve an even greater wasting of votes. 

But there are methods which provide near optimum effectiveness for the to-
tal vote. They involve a preferential ballot on which each voter places the 
number 1 next to the voterfs first choice, 2 next to the second choice, etc. 
Then, a very sophisticated system is used to transfer a vote when necessary to 
the highest indicated choice who has not yet been declared elected or been 
eliminated due to lack of support. Such a method is used to select members of 
the Nominating Committee of the American Mathematical Society (see [6]) and to 
elect members of the Irish Parliament (see [2]). 

The following arithmetical question arises in such single vote, multiposi-
tion elections: If there are v voters and s positions to be filled, what is the 
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smallest integer q such that q votes counted for a candidate will guarantee 
election under all possibilities for the other ballots? Clearly, the answer is 
the smallest q such that (s + l)q > v or 

q = [{v + l)/(s + 1)], where [x] is the greatest integer in x* (2) 

If Americans in general were more educated politically and mathematically9 such 
a method might be used to elect delegates to presidential nominating conven-
tions . Then an elector could number choices based on whatever criteria were 
considered most important, such as the presidential candidate backed, major 
issues, or confidence in a specific candidate for delegate. 

At bestj our primaries allow electors to express one choice for president. 
What "one person, one vote19 mechanism could we use to assign each vote to a 
candidate for delegate to make best use of the only information we have, that 
is, the number x>i of votes for presidential candidate C^ ? If the Vi people 
voting for Ci knew that they could maximize the number of delegates allocated 
to Ci by dividing into s^ equal-sized subsets with each subset voting for a 
different delegate candidate pledged to C^, the only information we have indi-
cates that they would do so. The result would be the allocation of the Jeffer-
son method, which we discuss in the next section. 

5. JEFFERSON'S GREATEST DIVISOR METHOD 

In a given primary, let there be n presidential candidates C^ , let x>i be 
the number of votes for C^, and let s be the total number of delegate seats (in 
a given political party) at stake in that primary. Suppose that the presiden-
tial candidates have submitted disjoint lists of preferred candidates for dele-
gate positions with the names on each list ranked in order of preference. 

Now let us fix i and consider each individual vote for C^ as a single 
transferable vote which is to be assigned to one of the delegate candidates on 
the Ci list, with the assignment process designed to maximize the number s^ of 
people on this list winning delegate seats. Below we show inductively that the 
following algorithm performs this optimal assignment and determines all the s^. 

From the ns ordered pairs (£, j) with 1 <_ i <_ n and 1 <. j <_ s, choose the 
s ordered pairs for which v^/j is largest. This may require a tie-breaking 
scheme (as is true of all allocation methods). Then the allocation sa to can-
didate Ca is the number of (i, j) with i = a among these s chosen pairs. 

6. FIRST EXAMPLE 

Here let n = 4 and the votes for four presidential candidates C^ in a given 
primary be given by the vector 

(v19 v2, v35 vh) = V = (3110, 2630, 2620, 1640). 

The necessary calculations and ordering for the Jefferson method J of allocat-
ing a total of s delegate positions among the four contending campaign organi-
zations is shown for 1 <_ s <. 22 in the following tables 

Ci Co C, c^ 
v = 
V/2 
v/3 
vlk 
v/5 
v/6 
v/7 
v/S 

vote received (1) 
(5) 
(8) 
(12) 
(15) 
(19) 
(20) 

3110 
1550 
1036+ 
777+ 
622 
518+ 
444+ 
388+ 

(2) 
(6) 
(9) 
(13) 
(17) 
(21) 

2630 
1315 
876+ 
657+ 
526 
438+ 

(3) 
(7) 
(10) 
(14) 
(18) 
(22) 

2620 
1310 
873+ 
655 
524 
436+ 

(4) 
(11) 
(16) 

1640 
820 
546+ 
410 
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The position indicators in parentheses before various quotients v^/j show the 
positions of these quotients when all quotients for all candidates are merged 
together in decreasing order. The number s^ of delegate seats to be alloted to 
presidential candidate C^ is the number of position indicators from the range 
1, 2, . .., s which appear in the column for C^. For example, when s = 20, the 
allotment to C2 is s = 5 since the five position numbers 2, 6, 9, 13, 17 from 
the range 1, 2, ..., 20 appear prior to quotients V2/j in the C2 column. The 
complete allocations for s = 20, 21, and 22 are 

J (20, V) = (7, 5, 5, 3), 
J(21, V) = (7, 6, 5, 3), 
J(22, V) = (7, 6, 6, 3). 

This example helps us in discussing the rationale for the method J. Let 
the total number of delegate seats to be alloted be 21. Think of 20 of the 21 
spots as having already been alloted with the distribution 

J(20, V) = (7, 5, 5, 3) 

and ask to whom the 21st spot should be given. Clearly, 6*3 is not entitled to 
a 6th spot before Cz obtains a 6th spot. To see if C\ should get an 8th, or Cz 
a 6th, or Ci+ a 4th, one looks at the largest quotient among ẑ i/8, 2̂ 2/6, and 
1^/4. The 21st spot goes to Cz on this basis. The result is the same as what 
would happen if we considered each vote for Ci as a single transferable ballot 
which should be assigned so as to maximize the number of delegates pledged to 
6*2- Then the 2630 votes for Cz could be assigned in six batches of at least 
438 for delegate candidates pledged to Cz and it would be impossible to assign 
the votes for the other presidential candidates in batches of at least 438 to 
more than 7 people pledged to C.i, 5 to C3, and 3 to Ci+. 

Now, let us alter the above example by introducing new presidential candi-
dates C5, Ce, ..., Cn (some of whom may be mythical write-in names) with votes 
V59 ...9Vn. We keep the total number of spots at s = 20, and note that the 
20th largest V^/j among the original candidates C\, Ci, C3, Ci+ is 444+. Hence 
the allocation will be (7, 53( 5, 3, 0, 0, ..., 0) unless some new v^ is at least 
445. Thus the method J has a built-in mechanism for distinguishing "real can-
didates" from "ego-trippers" and recipients of small batches of write-in votes 
deliberately wasted as a form of protest. 

"U HAMILTON'S ROUNDING METHOD 

Let us continue to use the votes vector V- (3110, 2630, 2620, 1640) of our 
example above. Let the number s of delegate positions available be 20. Hamil-
ton's reasoning was similar to the following: 

The "ideal" allocation of 20 positions in exact proportion to the V^ , but 
dropping the requirement of allocating in whole numbers, would be 

C\ C2 Cz ^h 
6.22 5.26 5.24 3.28 

If we have to change these to whole numbers, then clearly C\ is entitled to at 
least 6, Cz and Cs are entitled to at least 5, and C4 to at least 3. That dis-
poses of 19 of the 20 positions. Who should get the 20th? Hamilton Vs method 
H, also called the Vinton Method, would give it to Ci+ on the ground that his 
"ideal" allotment has the largest fractional remainder. (In Europe, this method 
is called the "greatest remainders" method.) 

We note that the Hamilton allotment #(20, 7) = (6,5, 5,4), while the Jef-
ferson allotment is c7(20, V) = (7,5, 5,3). Before we decide on which is "more 
nearly proportional," let us use the same votes vector V = (3110, 2630, 2620, 
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1640) but change from s = 20 to s = 22. Then the "ideal" decimal allocation 
becomes 

Oi b2 O3 O4 
6.842 5.786 5.764 3.608 

and the Hamilton allotment #(22, V) is (7, 6, 6, 3). The surprise is that add-
ing two new positions9 while keeping the votes the same, results in Ch losing 
one spot and each of the others gaining one. This phenomenon using the method 
H is called the "Alabama Paradox" and was first noticed when the Census Office 
chief clerks C. W. Seaton, showed that the apportionment under H of seats to 
Alabama in the House after the 1880 census would decrease from 8 to 7 if the 
House size were increased from 299 to 300 (with the same population figures). 

Balinski and Young [3, p. 705] quote Seaton, after discovering the paradox, 
as writing that "Such a result as this is to me conclusive proof that the pro-
cess employed in obtaining it is defective. . . . [The] result of my study of 
this question is the strong conviction that an entirely different process should 
be employed" and also quote [3, p. 704] Representative John C. Ball of Colorado 
as saying that "This atrocity which [mathematicians] have elected to call a 
1 paradox1 . . . this freak [which] presents a mathematical impossibility." 

Since Seaton!s observation, Hamiltonfs method has not been used for reap-
portionment of the House. However, it is perhaps the most widely used method 
in elections. The 1980 delegate selection rules of one of our major political 
parties required that "this atrocity" be used. 

Since the Jefferson method J allocates spots one by one as s increases, it 
is trivial to show that the Alabama Paradox cannot occur under J. (No paren-
thetic position number is erased when s increases by one.) 

8. OTHER QUOTA METHODS 

The discovery of the Alabama Paradox inspired a number of mathematicians 
to seek quota methods which are "house monotone," that is, quota methods which 
do not allow this particular type of paradox. These variations on H maintain 
the insistence that the "ideal" decimal allotments can be changed only through 
rounding up or down but they use other criteria than size of the decimal re-
mainder to decide on which way to round. Such "quota" methods are described 
and justified in [3], [4], and [5]. One should note that these papers deal only 
with the application to reapportionment of the House. For this application, 
the mathematicians of the National Academy of Sciences are available and could 
use sophisticated mathematics such as that of [5]. 

Our contention is that, at least in applications to primaries, all quota 
methods exhibit other anomalies, and that the criticisms of Jeffersonfs method 
are not very relevant. For additional ammunition to bolster these assertions, 
we consider new examples. 

9. A NEW PARADOX 

For the remaining examples, we fix the number of delegate spots at s = 20 
and vary the number n of presidential candidates. Using the same votes vector 
V = (3110, 2630, 2620, 1640) as above, one finds that a sophisticated quota 
method Q, such as those in [3], [4], and [5], has in effect been forced to agree 
with the allotment (7, 5, 5, 3) of the Jefferson method to avoid the Alabama 
Paradox. Now we introduce five new presidential candidates C$, ..., C3 with C9 

a write-in candidate (my favorite is Kermit the Frog). Let the new votes vec-
tor be V = (3110, 2630, 2620, 1640, 99, 97, 86, 84, 1). 

Under the Jefferson method, the 20th quotient remains at 444+. Hence those 
VI which are less than 445 do not influence the results and the allocation is 
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(79 5, 5S 3, 09 05 09 09 0) • However no quota method Q can give the same re-
sult. The reason is that the one vote "wasted" on C$ has reduced the "ideal" 
decimal allotment for C\ below 6 and9 thus9 all quota (i.e., rounding) methods 
bar C1 from having more than 6 delegates. This means that, under Qs one of the 
367 people who voted for C5, . ... , C9 took a delegate spot away from C1 and gave 
it to C2 or Cii. In this example., the write-in for C3 is the vote that forced 
this anomaly. 

The present author feels that such an effect is also "an atrocity" and is 
still paradoxical. Jefferson?s method avoids this anomaly since under J a vote 
can take a spot away from C^ only by adding a spot for the candidate C-j for 
whom the vote was cast. 

Altering Q9 as long as it remains a quota method, can only make us change 
our example. No quota method is immune to this anomaly. 

10. INTERNAL CONSISTENCY 

Let F be an allocation method, V = (vl9 . .., Vn), and 

S = F(ss V) = (sls . . . 9 8n). 

Let A be any proper subset of {1, 2, . .., n}, sr be the sum of the s^ for i in 
A9 and V! and Sf be the vectors resulting from the deletions of the components 
Vj of V and Sj of Ss respectively9 for all j not in A. If under all such sit-
uations we have F(sr

s Vf) = Sr
9 we say that the method F is internally consis-

tent. The discussion in the previous section indicates why no quota method can 
be internally consistent. 

The Jefferson method J is easily seen to be internally consistent. So is 
the Huntington "Method of Equal Proportions," which is the one used in recent 
reapportionments of the House. This method E is the variation on J in which 
the quotients V^/j are replaced by the functions <^//j (j - 1) . Note that this 
function is infinite for j = 1 and is finite for J > 1. Hence in the applica-
tion to apportionment of the House, one could interpret E as requiring that 
each state must be given one seat in the House before any state can receive two 
seats. Since this Is required by the U.S. Constitution, E is a method that has 
this mandated bias toward states with very small populations and gradually de-
creases this bias as the population grows. References [3], [4], and [5] take 
the position that an acceptable apportionment method must be a quota method; 
they therefore reject J and E and all methods which we call internally consis-
tent. Neither of these references mentions the fact that E "naturally" satis-
fies the constitutional requirement that each state must have at least one 
Representative, Despite this naturalness in using E for apportionment of the 
House, it seems to be an absurdity to use E in a presidential preference pri-
mary since single write-ins for enough names to make n >_ s would force all al-
locations Si to be in {0, 1}. 

Balinski and Young [3, p. 709] ask^ "Why choose one stability criterion 
rather than another? Why one rank-index than another? Why one divisor crite-
rion than another." Later on the same page they quote a Feb. 7, 1929, report of 
the National Academy of Sciences "signed by lions of the mathematical communi-
ty, G. A. Bliss, E. W. Brown, L. P. Eisenhart, and Raymond Pearl" as containing 
the statement that "Mathematically there is no reason for choosing between 
them." The word "them" refers to a number of methods which are internally con-
sistent. 

In the application to presidential primaries, one reason for choosing J 
over other methods if that J achieves the same results as the "single transfer-
able ballot" method if.one considers each vote for a presidential candidate C^ 
to be a ballot marked with perfect strategy solely for delegate candidates 
pledged to C. 
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IK DIVIDE AND CONQUER 

The Hamilton method (and other quota methods) may allow a group to round an 
"ideal" allotment of 4.2 into 7 by the group breaking up into seven equal sub-
groups , each with an "ideal" allotment of 0.6. Thus, quota methods can reward 
fragmentation and seem especially inappropriate in selecting just one person 
to lead a political party (and perhaps the nation). Under Jefferson1s method, 
no group can gain by dividing into subsets and no collection of groups can lose 
by uniting into one larger group. 

When J was originally proposed for reapportionments it was criticized for 
not being biased toward small states. The criticism by mathematicians, such as 
in [3], [4], and [5], is that it is not a quota (i.e., rounding) method. 

12. UNDERLYING CAUSES OF ANOMALIES 

Why does the Hamilton method allow the "Alabama Paradox" and why are the 
other, more sophisticated quota methods subject to regarding a vote for Z as a 
vote for Y and/or a vote against X? Basically, the trouble with all quota 
methods is that they mix the multiplicative operation with addition and sub-
traction o For example, they allow 0.1 to be rounded up to 1 but do not allow 
8.99 to be "rounded" to 10. Thus, they allow the actual allotment to be ten 
times the "ideal" for one candidate while not allowing it to be 1.2 times the 
"ideal" for another. The characteristic feature of quota methods is the insis-
tence that there be no integer strictly between the actual and the "ideal" al-
lotment. Thus, there is a bound of 1 on this difference, although there is no 
bound on the corresponding ratio. A method that claims to give "most propor-
tional" results should give more importance to the ratio than to the differ-
ence. 

This author also feels that quota methods (for primaries) are wrong in in-
sisting that Vi be at least |7|/s to guarantee at least one delegate for C^. 
The discussion of "single transferable ballot" methods (Section 4 above) indi-
cates that this should be [(\v\ + l)/(s + 1)] instead of |F|/S. Also, quota 
methods ignore the fact that many votes in a primary may unavoidably be just 
wasted votes. Using these wasted votes to determine "ideal" allotments allows 
a vote cast for Z to have the effect of a vote against X and/or a vote for J. 
A minimal step in the right direction would be to delete the Vi for candidates 
who receive zero allocations from the total vote size \V\ in determining the 
"ideal" allotment. (This might entail iteration of some process.) 

13- THE REAL LIFE EXPERIENCE 

The 1980 delegate selection rules of one of our major parties for the 
national presidential nominating convention required that the "paradoxical 
atrocity" H be used. However, the paradoxes illustrated above could not occur 
because these rules also stated that candidates who received less than 15 per-
cent of the vote in some primary were not eligible for delegate allocations. 
In reaction to the "plurality takes all" procedures of previous years, these 
rules also said that no candidate who received less than 90 percent of the to-
tal vote could be alloted all the delegate positions at stake in a given pri-
mary. If there were three candidates and their percentages of the total vote 
were 75, 14, and 11 percent, then any allocation under this patched up version 
of H would contradict some provision of these rules. So patches were added 
onto the patches described above. Contradictions were being discovered and 
patches added until all the delegates were selected and the Issue became moot. 
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The Jefferson method is much simpler to use and would have achieved more or 
less the same overall result. At least one state recognizes the Jefferson 
method in its presidential primary act. 
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1. INTRODUCTION 

In Horadam, Loh, and Shannon [5], a generalized Fibonacci-type sequence 
{An(x)} was defined by 

AQ(x) = 0, A±(x) = 1, A2(x) = 1, A3(x) = x + 1, and 

An(x) = xAn_2(x) - An_h{x) (n>4). 

The notion of a proper divisor was there extended as follows: 

Vo.{iAjnJJU.Ovi: For any sequence {Un}, n _> 1, where Un £. 7L or Un(x) e Z (x) , the 
pvopev divisov wn is the quantity implicitly defined, for n >_ 1, by w1 = U± and 
wn = max{di d\Un9 g.c.d. (d, wm) = 1 for every m < n}. 

It was then shown that 

(1.2) An(x) = 11 wd(x) 
d\n 

and 

(1.3) wn{x) = I! (Ad{x))vln/d) 

d\n 
where ]i(n/d) are Mobius functions. 

( i . i ) 


