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Voxn Hoggott k<n been tkd In^pixotLon oi many papoJiM that kavd appdo/idd m 
tkih jouuinat. He hkaXdd kt& dntkuAta&m and ciwlo&tty about mathmatldh with a 
notable. gmoAo&tty, Wlh AtuddntA? intdnd&f and pm poJU ixsojtd dWvidkdd by tkd 
pfioblem6 kd po&dd and o^ttn kdlpdd to&olvz. My own tntoAd6t In 6dqudnc.d6 w<x6 
gtidotly tn^bxdnddd by tkd coHAdbponddncd u;e ktarctdd wkdn I \Xiou> a graduate. 6ta~ 
ddnt at tkd UntvoAAtty oi klbwta* Some o& my f^iAht papoAA wtuttdn at tkat 
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time. weste. Aolution* to h.ej>exvic.h pnoblomb he. po&ed. To thiA day, national 4e-
que.nc.eA pe.nme.ate. my n.ej>e.anch mnk. It £>e.emh appn.opni.ate. to pn.eAe.nt my own view 
o{ the. the.on.y o{ finite. di{{eJie.nceA which haA evolve.d oveA the. ye.anA. ThiA 
pcipojt will be. u6e.{ul {on the. be.ginneA, the. AonX o{ pennon \IeAn Hoggatt heZpe.d 
60 muck, and i t should have home. novelty ion. othe.nA cu> weZl. In i t , I hope, to 
Ahow how stationed Ae.que.nceA {it into home. pantA o{ mathematics—Itncan. algcbn.a 
and elementary calculus in panticulan.. The. exposition will be bntefi with plenty 
o{ gaps to be filled in by the. leaden. 

1 . RATIONAL SEQUENCES 

What i s a r a t iona l sequence? A • mapping / from IN - {0, 1, 2, . . . } into a 
f ie ld £F i s rat-tonal if and only if there ex i s t elements c19 . . . , c k e $ with 
ck •£ 0, and there ex i s t s In e N with k <. h such that 

(1) f{n) = c±f(n - 1) + - . + ckf(n - k) (n e N, h < n). 
Sometimes a rational sequence is said to satisfy a linear homogeneous differ-
ence equation with constant coefficients. This long phrase is usually short-
ened to "difference equation" or "linear recurrence." We refer to (1) as the 
difference equation form, meaning it is one way of presenting a rational se-
quence. The term "rational" is short, and it describes a characteristic feature 
of such sequences. Namely, the generating function of f is rational (the quo-
tient of two polynomials); in fact, the generating function is 

(2) £/<n)3» = 
/(0) + {/(l) - ̂ /(O)}a + ••• + {f(h) - ••• - akf(h - k)}z* 

n = v J. — i^-i /o — - • • — {_.. <>•-

We refer to (2) as the generating function form of the definition of f. For 
example, the difference equation form of the Fibonacci sequence is 

FQ = 0, F1 = 1, and Fn = Fn_1 + Fn_2 for all n _> 2. 

This is equivalent to the generating function form 

(3) I>n*w =" 1-
n=0 I - Z - Z 

Perhaps it should be emphasized that (2) and (3) have purely algebraic in-
terpretations. We are merely using the formal sum as a convenient notation for 
a sequence. For example, (3) only means that the Cauchy product of the se-
quences (1,-1,-1,0,0, . . .) and (F0 , F± , F2 , . . .) is equal to (0,1,0,0,...). 
In terms of formal power series, this means 

(4) (1 - z - z2)f^Fnzn = z. 
n = 0 

We are not concerned with the fact that the power series on the left-hand side 
in (3) represents the rational function on the right-hand side for certain values 
of z. Such a discussion would have to be given to justify putting z - h. in (3) 
to conclude 

F F F 
f + f + . . . + # + . . . . 2 i 

but this is not the sort of application we have in mind. The algebraic basis 
can be found in [1], for example. 

Rational sequences may be recognized as such in other ways than by the dif-
ference equation or rational generating function. Next most important after 
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these is the exponential form. To get to the heart of the matter, suppose 
P(z)/Q(z) is the generating function of the rational sequence / with P, Q poly-
nomials over $ such that $(0) = 1, and P, Q have no common zeroes. (That is, 
P/Q is a "reduced fraction.") Also, there is no loss in generality to assume 
P has degree less than that of Q. (Otherwise, write P/Q = R + S/Q where R9 S 
are polynomials with the degree of S less than that of Q.) Also, it can be 
supposed that the zeroes of Q are elements of OF (otherwise, just extend $ by 
these zeroes). Suppose the distinct zeroes of Q are 1/6-L , ..., 1/01 [619 ...9 
Qt ± 0 because Q(Q) = l],and let di denote the multiplicity of 1/0^ for i = 1, 
..., t . Then Q(z) = (1 - G ^ ) ^ ••• (1 - §tz)dt, and it can be shown that there 
exist polynomials Px, . . . , Pt over JF with the degree of Pi less than di for 
i, = 15 . . . , t such that 

(6) £ i £ i = _ _ _ + . . . + . 
y u ; (i - e l Z ) d l (i - etz)dt 

Rather than give an explicit formula for the coefficients of Pi (z) , we will just 
show how to compute them. To do this, it is enough to consider the case i = 1. 
Start with 

d 4^ Fi(Z) P(z) 
(7) P±(Z) + (i - e l S ) d l £ — ^ ^ , 

*-2(i - e<3)d' £ ( i - e ^ ) d i 

^ = 2 

and d i f f e r en t i a t e d1 - 1 times with respect to z to obtain dY equations involv-
ing the various der ivat ives of the polynomial P1(z). Then put z = 1/0! in each 
of these equations to get 
(8) Dd{PiM}aml/e = 0 J > ( 3 ) £ ( 1 - ^2^~di\ (j = 0, . . . , ^ - 1), 

1 ( i = 2 )z=l/Q1 

where D denotes the differential with respect to z. (All of this can be done 
in an algebraic manner by introducing a formal operation on sequences; calculus 
is not actually required.) Note that by putting z = 1/0X in the jth differen-
tial equation, all of the terms involving P2, ..., Pt have a factor (1 - Q1z), 
so these terms drop out of the computation. This gives rise to a linear system 
of d± equations in the d± coefficients of P1. This system can be solved be-
cause the matrix of the system is upper triangular and has a nonzero diagonal. 
Once we have P19 . . . , Pt in (6), we can develop each of the t rational func-
tions on the right into a power series using the binomial theorem. In fact, 
the full force of the binomial theorem is not needed. One only needs 

(1 - zf * = o\ d L I 
and this can be established by induction on d. Thus, if 

then 

(10) 
P,; (2) 

( 

'0 • f l " • ' f d i - 1 * 

CJ^J v* ( (n + di - l\ ,Vi (n + di - 2\ , \an n 

r r e ~ r = £ M *<-i ) + M * - I ) + - - j ^ 
(n + d - l\ 

for i = 1, ..., t . Since [ i is a polynomial in n with degree d - 1, 
the coefficient of zn in the right member of (10) has the form ir^n)©^, where 
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i\l (n) is a polynomial in n whose degree is di 
elude that 

1. Summing over i, we can con-

l/0£ are the distinct zeroes of Q(z) with multiplicities d±, 
, T\t are polynomials over 3" where 7T̂  has de-

(11) f{n) = TT1(n)01 + ••• + TTt(n)0tn (n £ tf), 

where 1/61S 
. .., d^s respectively9 and T\19 
gree less than di for i = 1, . .., t . We call (11) the exponential form for the 
rational sequence /. We derived the exponential form from the rational form, 
but it is important to note that given any one of the forms (1), (2), or (11), 
the other two can be derived from it, 

Continuing the example dealing with the Fibonacci sequence, note that 1 -
z - z2 has zeroes 1/a, 1/3 where a = (1 + /5)/2, 3 = (1. ~ /5~)/2. Hence 

1 - z - z2 = (1 - as)(l ~ 3s), 

and using the method outlined above, we find 

z _ az __ 3s \^ a" " 3" „ n 

=o L - z - z~ i - az 
(12) ZX I - z - z 1 - as 1 - 3s n = o ot - 3 

Thus, the Fibonacci sequence has the exponential form 

an - 6n 
(13) Fn =SL

rrf- (n e N), 

where a = (1 + /5)/2, 3 = (1 - /5)/2. 
There is still another useful presentation of a rational sequence called 

the matrix form. Let 

[b I o o ... o~] f/(n) 
0 0 1 0 ... 0 
10 0 0 1 ... 0 I \f(n + 1) (14) M 

' f e - 1 "k-3 

Vn = 

f(n+k- 1) 

(H e N), 

where M is a k x k matrix having [ek, cx] as its bottom row and the 
(k - 1) x (k ~ I) identity matrix as the minor of the (/c, 1)-entry. It is easy 
to verify that Mvn = vn+1 for all nzN, and hence that MnvQ = Vn for all ne&, 
Since Mn can be computed in about log n matrix multiplications, it follows that 
f(n) can be computed in 0(logn) basic steps instead of the 0(n) steps one might 
guess. Note that the eigenvalues of M are 61, ..., Qt with multiplicities d19 
..., d-t* respectivelys because the characteristic polynomial of M is 

det(M - zl) = (~zfQ(l/z) = (~l)k(z} »k-i ck)-
(This can be shown by a simple induction proof on k.) 

In the case of the Fibonacci sequence, we have 

(15) 

Hence 

(16) 

M = 
0 

L F n + 1 J 

1 l 

(n e N), 

(n e N). 

The difference equation 

(17) 
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with o19 ...., ck e JF, ck 4- 0, has order k. The order of a rational sequence is 
the minimum order of all difference equations it satisfies. A rational sequence 
f of order k satisfies a unique difference equation of order k, [The unique-
ness depends on the standard form given in (17); after all, nothing is changed 
by multiplying through (17) with a nonzero element of £F.] In general, a rational 
sequence of order k satisfies as many difference equations of order k + d as 
there are polynomials R over fF with degree d and i?(0) = 1. To see. that the 
difference equation of lowest order satisfied by f is unique, suppose for the 
moment there are two. Say / satisfies (1) and 

(18) f{n) = bjin - 1) + • • • + bkf(n - k) (h < n). 

Taking the difference of equations (1) and (18) leads to a new difference equa-
tion with order less than k satisfied by f If b 4 o for some £ with 1 <_ £ <_ fc. 
So k cannot be the order of f as was assumed. If f has order k and (17) is the 
unique difference equation of order k satisfied by / (this is called the mini-
mal equation), then the generating function of / has the form (2). Let P and Q 
denote the numerator and denominator, respectively, in the right member of (2), 
and note that 6(0) = 1, and P and Q have no common zeroes. (Otherwise, g would 
satisfy a difference equation of order k - 1.) We call the rational function 
P/Q the canonical generating function of f9 and note that it is unique. For 
each polynomial R with degree d over fF with R(0) = 1, we have P/Q = PR/QR9 so / 
satisfies a difference equation of order k + d with coefficients equal to the 
coefficients of QRm All difference equations of order k + d satisfied by / are 
obtained in this way, because each difference equation of order k + d satisfied 
by / gives rise to polynomials U9 V over's with 7(0) = 1 such that P/Q = U/V. 
But this means PR = U and QR = V with R a polynomial over £F with degree d and 
i?(0) = 1. We conclude this discussion of the order of a sequence by observing 
that the order of / can be deduced from its exponential form by adding t to the 
sum of the degrees of i\1 s . . . , i\t. 

2. SITUATIONS IN WHICH RATIONAL SEQUENCES ARISE 

Sometimes rational sequences are formed in terms of other rational sequences. 
For examples if/, g are rational sequences over the field JF and a9 b e J, then 
we can form a new sequence In - af + bg defined by 

(19) h(n) = af(n) + bg(n) (n e N). 

Let Fs G5 H denote the generating functions of Fs G9 H9 respectively, then H = 
aF + bG. This means that H is a rational function because F and G are, so h is 
a rational sequence. It is easy to check that the set of all rational sequences 
over JF forms a subspace of the vector space of all sequences over ?. Further-
mores the sequences which satisfy equation (17) form a k~dimensional subspace. 
If 01, ..., 0t denote the zeroes of zk - c\~x -• • •• - ck with multiplicities 
d 9 ...s dt 3 respectively, it is easy to check that each of the sequences 

(ttJ'e": n e /N) for all j e IN and £ = 1, . .., t 

satisfies (17) . Using the exponential form for any sequence f which satisfies 
(17)s it follows that the k sequences 

(20) (nJ'01 m z IN) 0 _< j < d 9 i = 1, . . . , t 

form a basis for the vector space of all sequences which satisfy (17) . That 
this actually is a basis depends heavily on the proof that every solution of 
(17) has the exponential form given in (11). 

There are ways other than forming linear combinations to build new rational 
sequences from those on hand. For example, consider the Cauchy product f x g 
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or the termwise product / • g defined, respectively, 
n 

(21) {f x g)(n) = S/(i)^(n - i) (n e N), 
i = o 

(22) (f * ̂ )(n) = f(n)g(n) (n e ff). ' 

Let h = f x g9 and let F, £» # denote the generating functions of /, gs h9 re-
spectively•'. Then H = FG9 and H Is a rational function if the same is true of 
F and G. Hence, h is a rational sequence if / and g are. To see that / • g is 
rational whenever / and ̂  are, use the exponential form of / and ga It is fair-
ly easy to check that the product of two exponential forms is again an exponen-
tial form, so this approach gives a proof. The generating function of f • g 
can be given in terms of F and G by means of a contour integral as was shown in 
[2], The fact that the termwise product of two rational sequences is again 
rational seems to be due to Vaidyanathaswamy [10]. 

The termwise product can be used to produce all sorts of unexpected results. 
For example, since the Fibonacci sequence is rational, it follows that 

(p/: n e IN) 

is rational for all j e P. The minimal equation for the jth powers of the Fi-
bonacci sequence were given in [9], Also, the sequence p defined by p(n) = n 
in e IN) satisfies 

pin) == 2p(n - 1) - pin - 2), 2 .<. n, 

so pj = in3 i n e IN) is rational for all j e P. Hence, the linear combination 
q = aQ + OL-J) + ' •• + a-pJ is also rational, and so is g • / for any rational f. 
For example, again using the Fibonacci sequence, 

(n2Fn - n + 2 : n e IN) 

is rational. A little subtler use of the termwise product involves periodic 
sequences. Suppose s is a sequence such that s(ri) = s(n - m) for all n >_ h for 
some h9 m e IN; that is, s is eventually periodic and has period m. By defini-
tion, s satisfies a difference equation, so s is rational. In particular, let 
a, m e IN with 0 < m9 and define s(n) = 1 whenever a <_n9 n E a (mod m) , and 
s(n) = 0 otherwise. Since s is eventually periodic,s • f Is rational whenever 
/ is; furthermore, the generating function of s • f has the form zaP(zm)/Q(zm) 
with P, Q polynomials over S7 and Q(Q) = 1. Hence, the sequence g defined by 
gin) = firrm + a) for all n z IN has P(z) /Q(z) as its generating function, so g 
is rational. For example, the subsequence (F2, F?9 F'129 •••) = (̂ 5n+2 : n e ^ 
of the Fibonacci sequence is rational (the difference equation is 

Xn = l l x
n - l + Xn-2> 2 £ n). 

Interwoven rational sequencers are also rational. More precisely, suppose fQ9 

•••» fm-i a r e rati° nal sequences, and define / by 

(23) fin) = fr(n) [where n E r (mod m), n e tit] . 

Let F9 FQ9 . .., Fm_1 denote the generating functions of f9 fQ9 . .., fm_±9 re-
spectively, then 

(24) F(z) = P0(^) + 3^(3w) + ... + zm'1Fm_1(zm)' 
Since FQ9 ..., Pw_x are rational functions, so is F; therefore, / is a rational 
sequence. 

Sometimes a finite set of sequences is defined by means of some initial 
conditions and a finite set of difference equations. It turns out that each of 
the sequences is rational in this case. This can be formulated more precisely 
as follows: Let f19 ...9f be sequences, and suppose for each i, \ <_% <_m9 
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there exists hi e N9 together with finite sets S. , ..., S. c N and constants 
ci-k corresponding to each j e Sik such that 

m 

(25) f. (n) = £ X) e y k /* <" - 3) (n e B, ht < n) 
k = 1 j eSilt 

for £ = 1, ...,772. Also, suppose fiin) is given for all n with n <_ht for £ = 
1, ..., ffl, and suppose that this boundary condition together with the system 
(25) gives an unambiguous algorithm to compute the sequences fis . . . , fm . Then 
each of / , ..., /m is rational. To see this, convert the system (25) to a 
system of linear equations in the generating functions F^9 . .., Fm. The coef-
ficients in this system are polynomials in z over the field 3, This system can 
be solved using CramerTs Rule to deduce that each of F±, ..., Fm is a rational 
function. In fact, Fi has the form Fi /Q where Q is the determinant of the sys-
tem, and P̂  is a polynomial computed in a similar fashion. 

A particular case of the foregoing situation involves matrices. Suppose 
M = [eij] is an m x m matrix over the field $, and let vQ= [/̂  (0) , ..., fm(0)]T 

(where T denotes the transpose operator). Define vn for all n e IN by i;n+1=Mt;n. 
This is equivalent to the system of difference equations 

(26) f.(n + 1) = oilf1(n) + ... + oinfm(n) (n e ff) 

for £ = 1, ...,?72. In terms of generating functions, this becomes 

(27) MF = u0 

where F = [i^ , . .., Fm] . The determinant of this system is the characteristic 
polynomial of M; that is, det(M - zl) . This gives information about the denom-
inator polynomials in the generating functions F±, ..., Fm . This observation 
can be taken a little further to deduce the Cayley-Hamilton Theorem as was done 
in [3]. 

One might get the impression that the rational sequence f1 (defined in the 
previous paragraph) has order m, and that the minimal equation is given by the 
characteristic polynomial of M. But this is not always the case, and then Kry-
lovfs method may be useful. (See [11].) The idea here is to look for a linear 
dependency among the vectors M°VQ, M1vQS . . . , Mkv Q for fc = 1,2, ... . Once one 
has o 9 . . . s ck e <F for some minimal k such that 

(28) cQM°vQ + ... + okMkv0 = Mk+1vQ9 

multiply through (28) with Mn to deduce that f satisfies 

(29) cQxn + c1xn+1 + ... + ckxn+k = xn+k+1 (n e N). 

3. SOME APPLICATIONS 

This section gives brief descriptions of some recent results obtained by 
the author which involve rational functions. We start with domino tilings of 
rectangles with fixed width [4]. The idea here is based on an old, well-known 
observation about the number of paths of fixed length in a directed graph. Let 
7 = {1, ...,772}, let E C 7 x 7, and let M = [e ^ ] be an m x m matrix defined by 
e^ = 1 if (£, j) £ E and e^ = 0 otherwise. Elements of 7 are vertices, ele-
ments of S7 are directed edges, and M is the matrix of the directed graph (7, E) . 
A sequence (i>0, ..., uk) is a -path of length k in (7, #) just when (vi_1» V^) e 
E for £ = 1, ...,&. It is well known that the number of paths (v Q 9 ...9 £>£.) 
of length k in (7, S7) with vQ = £ and z;̂  = j is the (£, j)-entry in Mfe. Sup-
pose we are only interested in paths which begin and end with vertex 1. Then 
let c( k ) denote the first column of Mk for all k £ IN, and observe that Mc (fe) = 
0(k + i) f o r a l l £ £ ̂  W e w a n t t h e t 0 p- ei e m e n t c <£> 0f c (7°  for all k £ IN, so 
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the method outlined in the last paragraphs of Section 2 can be applied. In 
particulars it follows that (cj^ % k z IN) is rational, and Krylov?s method can 
be used to find a difference equation. Now let us see how this applies to 
domino tilings* Let t(m9n) denote the number of tilings of an m x n rectangle 
with dominoes for all m9 n e IF. We fix the width m and concentrate on the com-
putation of the sequence (t(m9 n) : n e IN). To do this3 we create a graph whose 
vertices are cross-sections of tilings, and two cross-sections form a directed 
edge in the graph just when one can immediately follow the other in some tiling. 
A cross-section is a grid line parallel to the end of width m which cuts across 
some dominoes and passes others,, Cross-sections can be encoded as binary se-
quences: 1 denotes a cut domino, and 0 denotes a crack between. For examples 
the 5 x 6 tiling shown in Figure 1 is encoded by the columns of the 0-1 matrix 
shox̂ n to its right. If we make the all-zero cross-section vertex 15 the m x n 
domino tilings correspond one-to-one with paths of length n beginning and end-
ing at vertex 1. More details can be found in [4]. 
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Fig. A 5 x 6 domino tiling with its binary cross-section encoding 

Now we give an example illustrating how a rational sequence can arise in a 
system of difference equations. Let A denote a finite set called an alphabet* 
and let A* denote the set of all finite sequences of elements of A» Such se-
quences are called words9 and in particular A denotes the empty word. Let F 
denote a finite subset of A* and let A*/F denote the set of all elements of A* 
which do not have any elements of F as subwords. Elements of A* belonging to 
A*/F are called good and others are called bad. Let w denote a weight function 
defined on A* such that w(nv) = w(u)w(v) for all u5 v e A** Suppose further 
that for each u e A*/F the sum 

is also a weight,, 
(uv E A*/F) 

The problem is to compute 

G GA = X w(u). 
(ueA*/F) 

It was shown in [5] that G is a rational function in the weights of elements of 
A. This follows from two equations: 

(30) 

and 

G - w(A) + Y,Gas 
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(3D Gu -w{u)^G - JXJ, 
where the sum in the right member of (31) is over all basic words uv with v e 
A* IF. A word is basic if it is bad but no proper initial subword is bad. Note 
that if u'is good9 and uv is basic, then v is not longer than n where n + 1 is 
the length of the longest word in F. (A terminal subword of uv is an element 
of F and must overlap u.) Together (30) and (31) give rise to a linear system 
involving Gu for all good words u not longer than n. A procedure may be fol-
lowed to keep this system small* First, write down (30). Then in subsequent 
stages write down expressions for those Gu which have appeared on the right 
side of earlier expressions obtained from (31) . Since the length of u is bounded 
by n9 this procedure terminates leaving us with a system linear in certain Gus 
u e A IF. We may conclude from the general argument given in Section 2 that Gu 
is rational in the weights w(a) s a z A; in particulars this is true of G. 

The result just described was used in [5] to treat a special case of the 
following unsolved problem. Let a^(x) = m^x + a^ be an affine function defined 
on the integers with W{5 ai e IN 9 mi > 1, for i = l9 S8e, k. Let <A> denote the 
semigroup generated by A = {ax9 . .., ak] under composition of functions. Note 
that an element ae <v0 has the form a(x) = mx + a with m a product of the num-
bers m1, . . . s mk . Let p19 . . . , p, denote the distinct prime divisors of m1, . . . , 
mk, and for each a e <A> with a(x) = p^1 . .. Vyl

hx + a* l e t w(a) = ^ I 1 oas xhh • 
It is easy to check that u(a(3) = w(a)w($) for all a, 3 £ <^> where a3(#) = 
ot(3G*0)« Is it true that 

we<A> 

is a rational function? This problem has been solved when m^ = m&i for some 
ei , m e Z5 i = l9 . . . 9 k; the case when ^ = •'•• = ek = 1 is treated in [6], 
and the systems of difference equations play an important role. 

We conclude with an example which illustrates a frequently used formula 
from combinatorics. Let A denote a finite alphabets let A* denote the set of 
words over A9 and let w denote a weight function on A* which satisfies w(uv) = 
w(u)w(v) for all u9 v e A*. Then 

(32) 5>00 = Ẑ  
ueA* 1 — 2L̂  W(a) 

a e A 

Thus, rational functions arise. For example, this simple formula together 
with the inclusion-exclusion formula were used in [7] and [8] to show that the 
sequence of forms assumed by growing crystals is rational, more precisely, let 
H9 D e Zk be finite sets, and consider the sequence of crystals 

H9 H + D9 H + D + D9 . . . 

formed by starting with the initial hub H9 and adding increments equal to D in 
subsequent stages. Such a sequence is indicated in Figure 2 with k = 2, H = 
{(0, 0)}, D = {(0, 0), (1, 0), (0, 1)}. r——i 

Fig. 2. A growing crystal 
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Give an element i = (i19 . .., ik) e I> weight w(i) = x^1 ... x£k and define 
the weight w(S) of S C Zk to be the sum of the weights of the elements of S. 
The main result is that 

(33) w(H) + w(H + D)z + W(H + D + £);s2 +• - . . 

is a rational function in x-{ , ...,#£ and s. • A consequence of this is that the 
sequence of volumes (|#| , |# + Z?| , |# + Z) + Z)|,..,) forms a rational sequence. 
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To tk(i m&nofiy o^ V. E. Hoggcutt Jn.—my tdcio}i&i and ^timd 

It is a well-known result due to Chebychev that if n and m are randomly 
chosen positive integers, then (n, m) - 1 with probability 6/TT2. It is the 
purpose of this note to show that if 9,(n) is the number of prime factors of n 
counted with multiplicity, then the probability that (n, Q(n)) = 1 is also 6/TT2. 
Thus, as far as common factors are concerned, Q(n) behaves randomly with respect 
to n. 

Results of this type for fairly general additive functions have been proved 
by Hall [2], and in [1] and [3] he looks closely at the situation regarding the 
special additive function g(n), the sum of the distinct prime factors of n. 
Hall's results do not apply to either Q,(n) or o)(n) , the number of distinct prime 
factors of n, and so our result is of interest. Our proof, which is of an 


