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I. INTRODUCTION

A Latin square of order n can be interpreted as a multiplication table for
a binary operation on »n objects 0, 1, ..., # - 1 with both a right and a left
cancellation law. That is, if we denote the operation by *, then

ax b=axc=>b=c
b a=cxa=b=c.

(1.1)

In a completely analogous manner, a Latin k-cube of order n is a k-ary
operation on # objects with a cancellation law in every position. That is, for
the operation ( ).,

(1.2) @y voes Guoqs Dy Guiqs eens Q) = (@ys wunes Qpqs Cy Quyrs wees Oy
implies b = ¢ for all choices of Z =1, 2, ..., kK and all choices of
{ars vvvs @si1s aze1s oo axt {0, 1, ..., m = 1},

We permit l-cubes which are just permutations of {0, 1, ..., n - 1}.
Two Latin squares are orthogonal if the simultaneous equations

(1.3) x*xy=a, &xoys=~>~
have a unique solution x,y for every pair a, b. A set of Latin squares is or-
thogonal if every pair of squares in the set is orthogonal.

In an analogous manner, a Kk-tuple of Latin k-cubes is orthogonal if the

simultaneous equations
(@5 Tys vevs XTy)y = ay

(1.4) (x]_, xZ’ DI xk)z =a2
(xl, Lys oo xk)k = a,
have a unique solution ., ..., X3 for all choices of a,, ..., Q;.
q 1 k 1 k

A set of Latin k-cubes is orthogonal if every Kk-tuple of the set is orthog-
onal.

In earlier papers, [1] and [2], we showed that the existence of a pair of
orthogonal Latin squares can be used for the construction of a quadruple of
orthogonal Latin cubes (3-cubes) and for the construction of orthogonal k-tuples
of Latin k-cubes for every kK > 3. 1In this note, we examine in greater detail
what sets of orthogonal Latin k-cubes can be constructed by composition from
cubes of lower dimensions.

*Research of this author was supported in part by NSF Grant MCS79-03162.
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11. COMPOSITION OF LATIN CUBES

Let C = (ays ...5 az) be a Latin s-cube and let C; = (b b

be Latin k;-cubes ¢ =1, 2, ..., s. Then
C* = (Cys Cpy vevy Cg)

is a Latin k-cube, where k = k; + k, + +++ + k,.

To see this we need only check that the cancellation law (1.2) holds. Now
let all the entries be fixed except for the entry b;; in the jth place of C;.
Since C is a Latin cube it follows that, if the values of C* are equal for two
different entries of b;; then the values of (; must be equal for those two en-
tries. This contradicts the fact that C; is a Latin cube.

This composition, while algebraically convenient, is not intuitive and we
refer the reader to [1] where we explicitly constructed a quadruple of 3-cubes
starting from a pair of orthogonal Latin squares of order 3. In the present
notation, starting from a # b and a ° b as orthogonal Latin squares, we con-
structed the quadruples

212 Y423 0 biki)i

(@ xb) xc, (a@a*b) oc, (@aeoh) xc, (ae°h)oc
or, equivalently,
ax (bxec), ax (boc), ao (b xc), ac° (bo°ce)

as orthogonal quadruples of cubes.
Similarly, if ( )1, «.+s ()i denote an orthogonal set of Latin k-cubes,
then

@ps vves )y @ TGiys @y vvvs Qpdy © Qpigs wees (Ags wevs )y © G iqs
(a;s «ves ak)i * Qg

is an orthogonal (k + 1)-tuple of Latin (kX + l)-cubes for any < € {1, ..., k}.
To see this, consider the system of equations

(xl, S xk)ijk+l=ajs 1ij_<_k
(@ys wees Xp)y % Lpyy = Qg
Then the two simultaneous equations
(@ys eees Ty © Tpyq = Ags (@ys eees Ty % Tpyq = Gy

have a unique solution (wl, cees Xy); and Once x,,, is determined, the

equations

k+1°

(@ys wvws Xp)j © Xy = Q5

determine (x,, ..., Zz); for all Jj=1, «e., 2 -1, 71+ 1, ..., k. Now by the
orthogonality of the k-cubes the values of Zys «ees Ty are determined.

Since pairs of orthogonal Latin squares exist for all orders n # 2,6, it
follows that there exist orthogonal k-tuples of Latin k-cubes for all k provided
the order n is different from 2 or 6. It is obvious that there are no orthog-
onal k-tuples of Latin k-cubes of order 2 for any kK > 2. For order n = 6 and
dimension X > 2, neither the existence nor the nonexistence of orthogonal k-
tuples of k-cubes is known. It is therefore worth mentioning the following
conditional fact.

Theonem I1-1: If there exists a k-tuple of orthogonal Latin k-cubes of order =
then there exists an 2-tuple of orthogonal Latin f%-cubes of order n for every
2=1+stk-1), s =0, 1, 2,

Pnooﬁ: By induction on s. The statement is obvious for s = 0. So assume
the statement true for £ and let ( )&, eees ( ): denote the orthogonal k-cubes
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and let ( )f, T )% denote the orthogonal %-cubes. Then we construct the
following set of Latin (2 + k - 1l)-cubes.

L+k-1 [ k
@ys eoes Qyypo1 ) (Q@ys eees @pd)ys Tpars eoes Oy up_ 1)1

L+k-1 %
(@ps «ves Agir-1)s (@ys wves @g)is Apays oees ax+k-1)§

L4+k-1 _ L k
@ps vves @yipiidi = (@5 eves @)y Tuns vees Ayiga )y
L+k-1 _ L k
(al, cees a2+k_1)k+l = ((a]_’ ceey ag)zs a2+1s eoey a!,+k—l)l
L+k-1 _ L k
@rs vves Ggpadive - = (@s eees @p)3s Gpyys eves Ggug1)]

L+k-1 _ L k
@ps oeos al+k_1)£+k_1 = ((@ys oves glys Ayyqs woes Ayip_1)7-

From the orthogonality of ( )t, cees ( ): it follows that the equations

L+k-1 _ . . _
£+k—1)i = ag r=1,

(xls ceesy &L ...,k

. )
determine (X1, ...y X£p)1s Lyp1a eoos Lyyp_1+ ONCE Xgyq, ouey Tyyp_1 are deter-
mined, then the equations

L+ k-1 ] 1
5

@5 vees Bpppadiey 0 = Gxays J 0= cees A -1

. L2 . .
determine (Xy, ..., xz)j+1- Now, by the orthogonality of ( )%, T )i, this
determines Zys eees Xy

I11. ORTHOGONAL (k + 1)-TUPLES OF LATIN k-CUBES

The above construction yielded a set of 4 orthogonal 3-cubes constructed
with the help of a pair or orthogonal Latin squares a o b and a * b. It is
natural to ask whether analogous constructions exist for higher dimensions. At
the moment we have only succeeded in doing this for dimensions 4 and 5.

Theorem I111-1: The 4-cubes
(abcd); = (a o b) o (¢ o d)
(abed)? = (@ o b) % (c o d)
(abed)i = (@ % b) o (c % d)
(abcd)ﬁ = (ax b) x (¢ % d)
(abed)} = (@ o b) o (c % d)
form an orthogonal set.
Proofi: We need to show that the equations
(eyzw)? = a;
determine x, Yy, 2, w when © runs through any four of the five values. Consider
first the case 7 = 1, 2, 3, 4. Then the first two equations determine x o y,
2 o w and the next two equations determine x % y, 2 * w. Nowx °© y and x % Y
determine ¥,y and 3 ° w, g * w determine 3z, w.
Now assume that one of the first four values of 7 is omitted. By symmetry
we may assume 7 # 4. Then the first two equations still determine & o Y, 2 o w.

Once x o y is determined, the last equation determines z % w and once z % w is
determined, the third equation determines x % y. The rest is as before.
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Theonem I11-2: Let ( ):, (’);, ( ): denote an orthogonal set of 3-cubes. Then
the 5-cubes

(abede); = (abe)? o (d o e)
(abede)$ = (abe)? x (d ° e)
(abcde)g = (abc)g o (d % e)
(abede); = (abe)l % (d = e)
(abede) ® (abc)g o (d o e)

5
(abede)? = (abe)] ° (d * e)

form an orthogonal set.
Proof: Consider the set of equations
(xyauv),; = a;

where 7 runs through five of the six values. If < # 5 or 6 then the first two
equations determine (xyz)i and # o v and the second two equations determine
(xyz)g and ¥ ®* v. Thus, u,v are determined and, therefore, the last equation
determines (xy2)3 and thus x,y, z are determined.

If 7 omits one of the first four values, we may assume by symmetry < # 4.
Then the first two equations determine (myz)i, and # o v. Now Z = 5 determines
(xyz)g and thereby < = 6 determines u % v. Finally, Z = 3 determines (xyz)z,
and thus x,Yy, 3,u, v are determined.

Applying these results to the lowest order, n = 3, we get the surprising
result that there exists a 3 x 3 x 3 cube with 4-digit entries to the base 3,
so that each digit runs through the values 0,1, 2 on every line parallel to an
edge of the cube and so that each triple from 000 to 222 occurs exactly once in
every position as a subtriple of a quadruple. Similarly, there exists a 3 X 3
X 3 X 3 cube with 5-digit entries, and all quadruples from 0000 to 2222 occur
exactly once in every position as subquadruples of the quintuples. Finally,
there exists a 3 x 3 x 3 x 3 x 3 cube with 6-digit entries, every digit running
through 0, 1, 2 on every line parallel to an edge and every quintuple occurring
exactly once in every position as a subquintuple.

There does not appear to exist an obvious extension of Theorems III-1 and
III-2 to dimensions greater than 5.

It is possible to use the case n=3 to show that the existence of two or-
thogonal Latin squares of order n does not imply the existence of more than 4
orthogonal 3-cubes or 5 orghogonal 4-cubes of order n.

Theorem I11-3: There do not exist 5 orthogonal 3-cubes of order 3.

Proof: Since relabelling the entries in the cube affects neither Latinity
nor orthogonality, we may assume that (£00); = < for all the 3-cubes ( )i+ So
the entries (010); are all 1 or 2. 1If there are 5 orthogonal 3-cubes, then no
3 of them can have the same entry in the position (010)5, since these triples
occur already in the positions (iOO)j. But in 5 entries 1 or 2, there must be
three equal ones.

Theonem I1I-4: There do not exist 6 orthogonal 4-cubes of order 3.

Proof: As before, assume (200); =%, j=1,..., 6. Since all entries (010);
are either lor 2 and no four of them are equal, we may assume that the entries
are 111222 as § =1, ..., 6. Hence, the entries (020); are 222111 in the same
order. Now the entries (001); and (002); must also be three 1's and three 2's
and cannot agree with 111222 or 222111 in four positions. But the agreement is
always in an even number of positions, and if the agreement with 111222 is in
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2k positions, then the agreement with 222111 is in 6 - 2k positions and one of
these numbers is at least 4.
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In [1] we studied the functions

(57 +1)/2 n odd > 1
fn) = { n/2 n even
1 n =1
and
(7n +1)/2 nodd >1
g(n) = { n/2 n even
1 n =1

and proved:
1. The only nontrivial circuit of f which is a cycle is

13 2 208 > 13.
2. The function g has no nontrivial circuits which are cycles.

In this note, we consider briefly the general case for this problem and
present the tables generated for the computation of log,(5/2) and log,(7/2) for
the two cases presented in [1].

Let

(gn+1)/2 »n odd, n > 1, g odd
h(n) = < n/2 n even
1 n=1
Then, as in [1], we have

Theorem 1: Let v,(m) be the highest power of 2 dividing m, m € Z, and let »n be
an odd integer > 1, then

n < h(n) < -+ < W), and B (n) < h(n),

where k = v,((q - 2)n + 1).
Also, the equation corresponding to Eq. (1) in [1] is

) 29((qg - 2)ng + 1) = qi((qg - 2)n + 1).

Again, we write ) .
n —m —— n*

where & = v,(m), n* =m/2*, k = v,((¢ - 2)n + 1) and
2k((g - 2)m + 1) = qgk((q - 2)n + 1)

and obtain our usual definition of a circuit.



