3. Now we are in a position to prove (1.3) and (1.4). We have

$$\begin{split} S(2m, m) &= \frac{1}{5}(2^{2m} + 2\alpha^{2m} + 2\beta^{2m}), \\ S(2m, m-2) &= \frac{1}{5}\left(2^{2m} + 2\alpha^{2m}\cos\frac{4\pi}{5} + 2\beta^{2m}\cos\frac{2\pi}{5}\right), \end{split}$$

so

$$\begin{split} S(2m, m) &- S(2m, m-2) = \frac{2}{5} \alpha^{2m} \left(1 - \cos \frac{4\pi}{5} \right) + \frac{2}{5} \beta^{2m} \left(1 - \cos \frac{2\pi}{5} \right) \\ &= \frac{2}{5} \alpha^{2m} \cdot \frac{\sqrt{5}}{2} \alpha + \frac{2}{5} \beta^{2m} \cdot \frac{\sqrt{5}}{2} (-\beta) \\ &= \frac{1}{\sqrt{5}} (\alpha^{2m+1} - \beta^{2m+1}) \\ &= F_{2m+1}, \end{split}$$

which is (1.3a). The derivations of (1.3b) and (1.4) from (2.4) are similar, and are omitted.

REFERENCES

George E. Andrews. The Fibonacci Quarterly 7 (1969):113-30.
Hansraj Gupta. The Fibonacci Quarterly 16 (1978):552-55.

SOME CONSTRAINTS ON FERMAT'S LAST THEOREM

J. H. CLARKE and A. G. SHANNON

The New South Wales Institute of Technology, Sydney, Australia 2007

1. INTRODUCTION

The proof of "Fermat's Last Theorem," namely that there are no nontrivial integer solutions of $x^n + y^n = z^n$, where *n* is an integer greater than 2, is well known for the cases n = 3 and 4. We propose to look at some constraints on the values of *x*, *y*, and *z*, if they exist, when n = p, an odd prime. The history of the extension of the bounds on is interesting and illuminating [3], as is the development of the theory of ideals from Kummer's attempt to verify Fermat's result for all primes [2].

2. CONSTRAINT ON z

It can be readily established that there is no loss of generality in assuming that 0 < x < y < z. Since $x \neq y$, $z - y \geq 1$ and $z - x \geq 2$. Following Guillotte [4], we consider $(x/z)^i + (y/z)^i = 1 + e_i$, where $e_0 = 1$, $e_p = 0$, and $e_i \in (0, 1)$ for $1 \leq i \leq p$. Summing over *i* from 0 to *p*, Guillotte further showed that

$$1/(1 - x/z) + 1/(1 - y/z) > p + 1 + \sum_{i=0}^{p} e_i,$$

from which we obtain

$$z(1/(z - x) + 1/(z - y)) > p + 2.$$

SOME CONSTRAINTS ON FERMAT'S LAST THEOREM

[Oct.

Since

376

$$z(1/(z - x) + 1/(z - y)) \leq z(\frac{1}{2} + 1);$$

$$3z/2 \ge z/(z - x) + z/(z - y) > p + 2.$$

Hence

z > 2(p + 2)/3.

Thus, if solutions in integers exist for the case when p = 7, we must have z > 6.

3. CONSTRAINT ON x

Now let hx + y = z. Since $z - y \ge 1$, $x \ge 1/h$. It has been shown in [1] that $h < 2^{1/p} - 1$, and so

 $x > 1/(2^{1/p} - 1).$

Hence, if integer solutions exist for p = 7, we know that x > 9.607. Since $z \ge x + 2$, we know for p = 7 that $z \ge 11.607$, which is better than the bound found in Section 2.

4. CONSTRAINT ON y

Since $1/x < 2^{1/p} - 1$, we have 1 + p/x < 2. Hence, x > p. For the case p = 7 we have that, if solutions exist, then x > 7, which is not an improvement on the result in Section 3. However, from [1], $z \to y + 1$ as $p \to \infty$, and thus if solutions in integers exist for very large values of p, then very large values of x and y are involved. We note also, since

$$2^{1/p} = \sum_{r=0}^{\infty} \left(\frac{1}{p} \ln 2\right)^r / r!,$$

that

 $2^{1/p} - 1 < \ln 2/(p - \ln 2)$,

which with the results from Sections 2 and 3 gives

 $y > p/\ln 2$.

When p = 7, this yields x > 9.099 compared with x > 9.607 from Section 3. However, as p increases, the inequalities become closer, and the simpler $y > p/\ln 2$ is adequate. y > 1.442695 is also "sharper" than x > p.

Zeitlin [6] proved that no integer solutions exist for $x + ny \le nz$. We note that for n = 7, x > 9.607, y > 10.099, $z \ge 11.607$ as above, x + ny > 80.300 and $nz \ge 81.249$. Perisastri [5] showed that in our notation

$$\sqrt{2x} > \sqrt{y}(1 + 1/(2p \ln 2p)).$$

For p = 7 and x, y, z as above, $\sqrt{2}x = 13.586$ and $\sqrt{y}(1 + 1/(2p \ln 2p)) = 3.264$.

REFERENCES

- 1. J. H. Clarke & A. G. Shannon. "Some Observations on Fermat's Last Theorem." New Zealand Mathematics Magazine 16 (1979):80-83.
- 2. H. M. Edwards. Fermat's Last Theorem. New York: Springer-Verlag, 1977, Ch. 2.
- 3. L. J. Goldstein. Abstract Algebra. New York: Prentice-Hall, 1973, p. 155.
- 4. G.A.R.Guillotte. Problem H-225. The Fibonacci Quarterly 17 (1979):95-96.
- 5. M. Perisastri. "On Fermat's Last Theorem." American Mathematical Monthly 76 (1969):671-75.
- 6. David Zeitlin. "A Note on Fermat's Last Theorem." The Fibonacci Quarterly 12 (1974):368, 402.