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IDENTITIES FOR CERTAIN PARTITION FUNCTIONS
AND THEIR DIFFERENCES*

ROBERT D. GIRSE
Idaho State University, Pocatello, ID 83209

1. INTRODUCTION

If 2 >0 andn > 1, let q; n) (qg(n)) denote the number of partitions of
into an even (odd) number of parts, where each part occurs at most 7 times;
qs(0) =1 (qg(0) = 0). If 220 and 7 >0, let A;(n) = g§(n) - q2(n).

We note that for ¢ > 0 and n > 0, qf(n) + q2(n) =p,(n), where p, (n) de-
notes the number of partitions of # where each part occurs at most % times.

The purpose of this paper is to give identities for g$(n), q2(n), and A;(n).
The function A;(n) has been studied by Hickerson [3] and [4], and by Alder and
Muwafi [1]. They have given formulas to determine A;(n), for ¢ > 1, in terms
of certain restricted partition functions. The case © = 1 is a well known re-
sult due to Euler [2, p. 285]. Another result of this type, the Sylvester-Euler
theorem [5, p.264], states

(1) An) = (-1)"Qn),

where A(n) is the difference function with the restriction on the number of
times a part may occur removed, and @(n) is the number of partitions of # into
distinct odd parts.

Here we first obtain identities for A;(n), some of which are recursive. We
then find several identities for q$(n) and q3(n) which also give us some new
results for A;(n). Our identities not only demonstrate relationships between
these functions and other partition functions, but many of them are also useful
computationally.

We will make use of the following partition functions in addition to those
already defined. For n > 1:

(i) pm) (gq(n)) denotes the number of (distinct) partitions of n.

(11) Pay,..ovarsn (M) (@ay, ..., a05(n)) denotes the number of (distinct) par-
titions of n into parts = a; (mod b), 1 < J < r.

(iii) Qy(n) denotes the number of partitions of » into distinct odd mul-
tiples of k.

(iv) qt*(n); p¢,,(n) denote, respectively, the number of partitions of n
into distinct parts and even parts, where no part is divisible by 7.

By convention, when n = 0, each of these partition functions assumes the value

1.
We let [x] denote the greatest integer function and 2: denote the sum over
r

all nonnegative »r such that the summands are defined. Finally, we let m be an
integer > 1 unless otherwise specified.

*The material in this paper is part of the author's doctoral dissertation,
written under the direction of Professor L. M. Chawla at Kansas State Univer-
sity.
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2. IDENTITIES FOR THE DIFFERENCE FUNCTION

We will base our proofs in this section on the generating function of A,
which is given by

o - IESCANCEENY,
) Yaimen = ] 2L
n=0 j=1 1+ x?
"
Theorem 1: (1) App(m) = Y. APYGy, pmyr (= 1)
r=0

(i) A, () = 2 (-1)TAm - (3r® £ r)m).

r

Proof: Since

(3 3 amyzn = [ ——
and "o =11 +a?

(4) 2 dgy man =1 (1 + =z,
we have e 7

(2m+1)J

3 By i = [] 1EE =T —2 =1+ oened)
n=0

=1 1+ xd i=11 4+ x9d=1

3 05"E 4y, 5"
n=0 n=0

i(Z A(P)Gy; pmyr (B = 1")>90",

L}

n=0\r=0

and equating coefficients proves (i). On the other hand,

2mg

S il - J o P .
ZAZm-l(n)xn =rl -l—-—x————=n ""l_'n(l _xZMJ).
n=0

i1 1 +xd =11 +xdi-1

Now Euler's Pentagonal Number Theorem [2, p. 284] states

(5) rl (1 - xaj) = Z (_l)rx%(3r2+r)a.
j=1 ==-o
Thus, ! g

o

E: A, i (myxn

]

i A(n)x”i (_1)1'30(31’2 + r)m

n=0 n=0 r=0
&= Z <Z (-D"A(m - (3% # r)m))x”,
n=0 r

and equating coefficients gives (ii).

Using the Sylvester-Euler identity (1) for A in Theorem 1 yields the fol-
lowing result.
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Conolbary 1: (1) 4, (1) = Y, (<1)7Q(2)qq; ymas (7t = 1)
r=0

(i1) Ay, () = (D" (-1)"Q(n - (3r* + r)m).

Theorem 2: (1) Ay () = 3 By 1 (g, ,, (0 - 1),
r=0

(11) Dy ) = 2 (-1)7A,, (n - %(3r% £ r)(2m + 1)),

where (ii) also holds for m = 0.

Proog: From (2) we have

ki © 1 x#mj © 1 - mej o .
Z By, Mz = 1 — =11 - — 11+ 22™7).
n=0 i=1 1 + xY J=1 1+ g7 =1

Thus, applying (2) and (4),

Z Dypoy (n)x™ = Z A2m_l(n)x"2 Go; 2m (MIT™s
n=0 n=0 n=0
and (i) follows. Now

L © 1 - w(‘-lm+2)j © (2m+1)j
N = = -

Z Bypsy ()" = n : B n i ,n(l z )

n=0 i=1 1+ x? i=1 1+ i=1

© n
= 2 Ay ()™ E (-1)7x36P? £ 2)(2m+D)
m
n=0 o0

1+ 22D =

from (2) and (5), and (ii) follows immediately.

Theorem 3:

. q0;2m+1(n) for 7 = 2m,

ZAi(n)q(n -r) = (-1)* if n = (3r2+r)m for » = 0,1, 2, ,]
=0 0 otherwise,

Proof: Using (2) and (4) we have

> A, marY gmar = 1 (1 + (-1Fa D)y,
n=0 n=0 ji=1
Thus,

[Ma + @™y =% g (" for i = 2m,

n=0\r=0

i(Z Ay (r)gn - r)>x” I BCA n=0

r=0

From (4) and (5). Equating coefficients, the theorem is proved.

Theorem 4: Pty (n) for i = 2m,

n

2 0 (@)p, (n - 1) =
r=0

363

for 2=2m-1.

Ma - 2?m) = 3 (-1)"=C"" ™ for ¢ = 2m - 1,
=1

2 (-1)"pit (n - (3r® t r)m) for i = 2m - 1.
r
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Proof: The generating function of p, is given by

kad o _ N (P+1)g
) S o, (en = 2

n=0 J=1 1 -x?

and so using this and (2):

il © © 1y (B o
ZAi (n)x"z p, )z =[] 1+ () ' (1 - g7y,
n=0 n=0

i=1 1 - x%

Now if ©Z = 2m,
® (2m+1)

Z<2A2m(r)p2m(n - I’))x” = ﬁ l_";x___*.(l - m(2m+1)j)

n=0\r=0 Ji=1 1 - ng
_x2(2m+1)j

s

1 1 - x?

=l —— E Poy s ()™,

izl 1 - x?
2m+1¢ 4§

J

Likewise, if 7 = 2m - 1,

3 3 o _ p2mg i
Z<2A2m—1(r)p2m-1(n - T)).’L'n = n L_Lg—-(l - xzmﬂ)

n=0\r=0 j=1 1 - x?

Z pyT, (M"Y (-1)"z T
r=0

Zm: (E -3, (n - 37" = r)m))x”,

n=0
where we use (5) to obtain the second equation. Thus the theorem is proved.

Conollarny 2: 1f n is odd,
n
S 8, (n - x) =
r=0

Proof: First we note that both p¢lt2(n) = 0 and p37,(n) = 0 for n=1 (mod 2),
and since n - (3r? * r)m = n (mod 2) the corollary follows from Theorem 4.

Theohem 5: For m > 1,

1) Y Do @g?™ (- 1) =
r=0

(1) D Bym PPy, .y amers2n @ = 1) = O
r=0
Proog: From (2) we have
J
E A; (n)x"n 1tz =1

=11 + ( 1)L (Z+1)J

where
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= 1+ .’L"j 7 = +
—_— = (1 +x7) = 2L () n
F=11 4 g2m+Dd jrzll ) n;;q s
and 2m+ 14 g

> 1 4+ xd o 1
I1 = [

J=11 - x?M  J=1(1 - 2?MIy(1 - 2?71
- T 1

_j=0 (a1 - xzmj+1)(l _ xz'"j+3) cee (1 - x2mj+(2m-1))(l _ xzmj+2m)

= n
- Ep0,1,3,...,2m—1;2m(n)x s
n=0
and so the theorem follows.

3. IDENTITIES FOR THE DEFINING PARTITION FUNCTIONS

We will base the proofs in this section on the generating functions of g¢
and qf, which we construct in the following two lemmas.

; e n I R A r+1, (2mt1)(r+1)?
Lemma 1: (i) Y qf,mz" =[] ————— Z( 1)
n=0 j=1 1 - a7 r=0

+ 2(—1)%“),

Ly I A = r_(2m+l)r? _ T ro.p?
(11) Y g9, mar = [] ————— Z( IR - Y DTz
n=0 1 - r=0

J=1

Proof: First we recall that p;(n) = qf(n) + q2(n). Thus, using the definition
A;(n), we have ZqE(n) p; n) +A;,(n). Hence

2Y g5,z = Y pon ()" + Y By (M,
n=0 n=0 n=0

and so, from (2) and (6), we have

w1 - g 2mt1)d £ (2m+1)d

+I°-°l]L+

i=1 1 - zd i=1 1+ xd
_ ﬁ 1+ x(2m+1)3‘ © 1 - x(2m+l)j
Jj=1

]

2 ZQG (n)x™

© - pd
. ) m)
1 - x? =11 4+ @M+ 1] 4 g
Now

122 9 cnmeen,

i=11 + x¢ r=-w

which is a special case of Jacobi's identity [2, p. 283]. Using this result
twice yields,

® © (2m+1)J LJ ) )
2 252,7, ()zn = n 1 +x ( Z (-1)7z (2m+1)r? | Z (-1)?zT >
n=0

j=1 1 - xrj P=-c r=-cw

= ﬁ w<2 + 2 E( -1) a8(27r1+1)1f'2_|_ 2 Z( ¥z r2>

j=1 1 - xY r=1
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from which (i) follows immediately. To prove (ii), we note that

q2.,(m) =p, () - q; (n),

and so
PICMOLLED I M OLIED A Ol
n=0 n=0 n=0
_ ﬁ 1 - g 2mhd fi 1 + ¢ 2m+ud E( 1)+ (2mt D(r+1y?
J=1 1 - a9 J=1 1 - zd 5

+ f: (—1)".70"2>

r=0

x(2m+l)j/ © 1] - pl2m+1)d

- i(_i)r+lx(2m+l)(r+l)z
1 -7 \j=11 + g @I r=0

- Zm: (_l)rxr'z)
r=0

= ﬁ 1_+£7:.1_)'?_< i (_l)r‘x(Zm'f'l)l'Z - zm: (_l)lf'x (2m+1) r?

J=1 1 - a9 r=-o r=1
_ z (_l)rxrﬂ).
r=0

Simplifying the right-hand side of this equation yields (ii), and so the lemma
is proved.

=1+
I
i=1

Using the same method of proof as in Lemma 1, with several minor altera-
tions, proves the following result.

Lemma 2: (i) f: qs,., Mx" = m <Z( D7z rZ)
. n=0 .7'=1 1 - xJ

(ii) Z qo,., (an = ﬁ L.:;?L.(Z( 1) x(r+1)>
n=0 i=1 1 = 29 \r=0

We now give identities for ¢f and g2, and then combine these results to ob-
tain formulas for A;. First note that in Lemma 1, using (4),

(2m+1)J ©

= 2 dos znan (0" E Pz,

~ 1 +x
Il
J=1 1 - xd
cand in Lemma 2, from (6),
! ) Lo
mn E Py, g ()T

J=1 l—xJ n=

Thus, using these two results, the following two theorems follow directly from
the lemmas. V%]

Theonem 6: Zn:qo;2m+1(” - k) DDk - 2m+ ) (r + 1)?)
(1) qg,m ={ *” e e p(k - %)),

Zp(n - k) 2 (-1)"*(qy, ynar (k= (2m + D (2 + 1)?)

. = qo; 2me1 (K - r?)),
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n [/k]
> oy om0 =K 3 DT @K - (2m + Dr?) - pk - 22)),
s o . k=0 r=0
G, =1, )
k;) pn - k) Z:O (-1)"(qy; pppq k= (20 + 1)r?)
' - q0;2m+1(k - P2)>’

where p(n) = 0 and q0_2m+1(n) =0 for n < 0.

[/n]

Theorem 7: (i) qf,_ () = 3. (-1)"p, . (n - r?),
r=0
[/7n]
(11) qg, M) = P, (D" p, (- r?).
r=1

Using the results of Theorems 6 and 7 and the definition of A; proves the
following corollary.

n V&]
Corollany 3: Do; omar 0~ k)(p(k)+2 Z -pk - r2)>,
. _ ] k=0 r=1
1 4,0 = " VTl
2, 2 = (A0 00 + 2 8 (170 s = ),
L/l
(11) By, () =p, () +2 ) (-1)"p, (- r?).
r=1
(/7]
Corollany 4: A(n) =pm) +2 )., (-1)7pn - r?).
r=1

Proof: This follows from the results of Theorem 1(i) and Corollary 3(i).
Multiplying both sides of the generating functions in Lemma 1 by

ﬁ (]- - xJ):
=1

and using (5), yields the following identities.

Theorem 8:

[/nl
3 DTG, - 2m D2 + D)

]

(1) T DXqe (n - (3K * k)
k

r=0 . 2
/7] - qo;2m+1(n -7,
(i1) zkj<—1)kqgm(n - L(3k% £ k) = 2(—1)P(q0; s = (2m+ Dr?)
- q0;2m+1(n - %)),
where qg, ;41 () = 0 when n < 0.
Corollarny 5:
L]
%;(_I)RAZm(n = %3k £ K)) = g, ppey () + 2 Z;("l)rqo;2m+1(” - r%).

Theorem 9:

n [/n]
(1) Y DTG5 @ (=) = Y DT E( - (2m + D (2 + D)
r=0

r=0 - p(n - 7)),
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n [/
(11) Y (=18 ()@, ., — ) = Y (-1 (p(r - (2n + Dr*)-pk - r7)),
r=0 r=0

where p(m) = 0 when n < 0.

Proof: This follows from Lemma 1 if we multiply the generating functions on
both sides by

= 1 - T (m+DEI-1y - % n
- = (1 -z ) = (1)@, 1 ().

jl:ll 1 4+ o (2m+1)J jIJl ,;0 am+d

n [vn]
Theorem 10: (1) 3 g, (™p,, . (n =) = 3 (-1)7p(n - r?),

r=0 r=0
n [/n]

(1) Y g p,., (1 -r) = 2, (D pk - 7).
r=0 r=1

Proof: Here we multiply the generating functions of Lemma 2 by

% M—L— =3 p,,, e
n=0

J=11 - xzmj
on both sides, and the theorem follows.
Corollarny 6:
n
3 DA, ()8, (- )

r=0

n = A(n).
E:Azm“l(r)po;Zm(n - r)
»=0

Proof: Using the results of Theorems 9 and 10, we have

2 DA, ()@, (7 = T /]
r=0 o
=pm) +2 ) (-Dp(n - ),

r=1

Z:AZm-l(P)pO;ZW(” -r)
r=0

and so this result follows from Corollary 4.

Theorem 11:
(-1)" if n = t2,
for t =0, 1,
0 otherwise,

+

2, vius

(1) Y Py, = k) T (-1)7q5, (k- 532 £ 1))
k=0 r

(-1)" if n = t2,
for t =1, 2, ...,
0 otherwise.

(1) ¥ Py 0 - k) L (172, (k = %(3r% 1))
k=0 r

Proof: These identities follow from Lemma 2 if we multiply both sides of the
generating functions by

fi 1 -z ,

Jj=11 - mej

and use (5) and (7).
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Conollany 7: .
L 1ifn=20
(-D"2 if n = 2,

k;)po; Zm(n - K ;(_1)PA2m-‘l(k - 1/2(3172 tr)) = for t =1, 2, ...,

0 otherwise.
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INTRODUCT [N

Let F, and L, denote the nth Fibonacci and Lucas numbers, respectively. AlL
such numbers of the forms w?, w®, w? + 1 have been determined by J. H. E, Cohn
[2], H.London and R. Finkelstein [8], R. Finkelstein [4] and [5], J. C. Lagarias
and D. P. Weisser [7], R.Steiner [10], and H. C. Williams [11]. In this arti-
cle, we find all Fibonacci and Lucas nubmers of the forms w? -1, wd £ 1.

PREL IMINARIES

(1) L, =w?>+n-=10r3
(2) L, =2w%+n =0 or %6
(3) Lp=uwd-»n=zl

(4) Lp=2w®>n=0

(5) L,=4w® >n=13

(6) Lon = (-1)"Ly
(1) Fps Fruly) = (Bys Lyy) = 1

(8) 3|F, iff 4|n

(9) L,, =1L%- 21"
(10) Ly,yy = Lplpsr - (-1
(11) 1If (2, y) = 1 and xy

and w = w.
(12) Fyps1 = Fopsralo, =1
(13) Fyp = Fop1lpps1 — i

(14) Fy,_p =F,, L, -

)

n
= w", then x = u”*, y = v", with (u, v) =1



