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THE ANDREWS FORMULA FOR FIBONACCI NUMBERS
MICHAEL D. HIRSCHHORN
University of New South Wales, Sydney, Australia
1. George E. Andrews [1] gave the following formulas for the Fibonacci
numbers F,, (F1 =F,=1,F  , =F, + F;+1) in terms of binomial coefficients

((n;

(1.1)

(1.2)

0 - )

=
1]

DY -1 (-1 - 55)/2D),
J

F, = 1Y s [ -1 - 50)/2]).
J

Hansraj Gupta [2] has pointed out that (l.1)and (1.2) can be written, re-

spectively, as

(1.3a) F, w1 =5@m, m)y - S2m, m - 2),

(1.3b) Fomiy =58@2m+ 1, m) - S(2m+ 1, m - 2)
and

(1.4a) Fope1 =S5Q@2m+ 1, m) = SC2m+ 1, m~- 1)

(1.4b) Fomen s@2m+ 2, m) -S@2m+ 1, m - 1),

where S(n, k) = L(n; J), the sum being taken over those j congruent to kK modulo
5, and has given inductive proofs of (1.3) and (1.4).
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The object of this note is to obtain (1.3) and (1.4) by first finding
S(n, k) explicitly in terms of such familiar numbers as

o =21+ /5), 8 =321 - /5.
2. We begin by noting that

(2.1) (1 +x)" = 3(n; JHxd.

2mi
If we put x = 1, w, w?, w®, w* into (2.1) in turn (where w = ¢° ), add the re-
sulting series, and divide by 5, we obtain

(2.2a) S, 0) =-§(2" + (L 4+ 0"+ (L +0)" + 1 +w)?+ 1+ 0.

In similar fashion,

(2.2b) S(n, 1) = %(2"-ruﬁ(1 + )" + Wi+ )" + 02l + 03" + ol + W),

(2.2¢) s, 2)

%(2” + w1+ W+ w( + ) + w1+ W)+ w( + ),

(2.2d) s(n, 3) = é{zn + w3l + W+t @+ )" + w( + )+ 0+ ),

(2.2¢) sn, &) %(2" +o(l + )" + 02 + )" + 03 + o + A+ ™)),

2 i) i
Now, l+w=14+¢e° =2 cos % ce® =aqe’ , and similarly,
214
1+ w?=-Re ®,
_2mi
1+wd==-Be °,
o
1+ =ae °,

so (2.2a) becomes

(2.38) S(ns 0) = %(2” + unenﬂi/S + (_B)nQZnﬂi/S + (_B)ne—Zn'ﬂ"l:/5 + ane-n"i/S)

=-§(z" + 20" cos nm/5 + 2(-B)* cos 2nT/5).

In similar fashion,

(2.3b) g(n, 1) = %(2" + 207 cos(n

2)T/5 + 2(-B)" cos(2n

4)m/5),

(2.3¢) s(n, 2) %{2” + 207 cos(n - 4)T/5 + 2(-B)" cos(2n + 2)7/5),

(2.30) 5(n, 3) = £(2" + 207 cos(n + 4)T/5 + 2(-B)" cos(2n - 2)1/5),

(2.3e) s, 4) %(2" + 207 cos(n + 2)T/5 + 2(-B)* cos(2n + 4)T/5).

It follows that, for every %k,

(2-4) Sns k) = %(2" + 20" cos(n - 2k)TW/5 + 2(-B)" cos(2n - 4k)m/5).
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3. Now we are in a position to prove (1.3) and (l.4). We have

5(2m, m) = %(22’" + 202%™ + 282M),
SQ2m, m - 2) = %(22m + 204%™ cos %? + 282%™ cos %g),
s0
2
S(2m, m) - S(2m, m - 2) =-§u2m <l - cos %?) +-§Bzm (l - cos %?)

_2pm, B L 2gom, /5
=3¢ 7 o *t 36 7 (-8
_ 1 (a2m+L _ g2m+ly
= Fopt1s

which is (l1.3a). The derivations of (1.3b) and (1.4) from (2.4) are similar,
and are omitted.
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1. INTRODUCTION

The proof of "Fermat's Last Theorem,' namely that there are no nontrivial

integer solutions of x” + y” = 2", where n is an integer greater than 2, is
well known for the cases n = 3 and 4. We propose to look at some constraints
on the values of x, y, and 2, if they exist, when n = p, an odd prime. The
history of the extension of the bounds on is interesting and illuminating
[3], as is the development of the theory of ideals from Kummer's attempt to
verify Fermat's result for all primes [2].

2. CONSTRAINT ON z

It can be readily established that there is no loss of generality in as-
suming that 0 < x <y < 3. Since x # Yy, 83 -y 21 and 2z - x > 2. Following
Guillotte [4], we consider (x/z)% + (y/z)i =1+ e;, where ¢y = 1, ep = 0, and
e;e (0,1) for 1 < 2 < p. Summing over ¢ from O to p, Guillotte further showed
that

14
1/(1 - x/z) + 1/(1 -ylz) >p+ 1+ e

. . =0
from which we obtain ¢

2(l/(z —x) +1/(z -y)) >p + 2.



