REFERENCES

- 1. L. Carlitz and H. H. Ferns. "Some Fibonacci and Lucas Identities." The Fibonacci Quarterly 8 (1970):61-73.
- J. H. E. Cohn. "Square Fibonacci Numbers, Etc." The Fibonacci Quarterly 2 (1964):109-13.
- 3. U. Dudley and B. Tucker. "Greatest Common Divisors in Altered Fibonacci Sequences." *The Fibonacci Quarterly* 9 (1971):89-92.
- 4. R. Finkelstein. "On Fibonacci Numbers Which Are One More Than a Square."

 J. reine angew. Math. 262/263 (1973):171-82.
- 5. R. Finkelstein. "On Lucas Numbers Which Are One More Than a Square." The Fibonacci Quarterly 13 (1975):340-42.
- 6. O. Hemer. "Notes on the Diophantine Equation $y^2 k = x^3$." Ark. Mat. 3 (1954):67-77.
- 7. J. C. Lagarias and D. P. Weisser. "Fibonacci and Lucas Cubes." The Fibonacci Quarterly 19 (1981):39-43.
- 8. H. London and R. Finkelstein. "On Fibonacci and Lucas Numbers Which Are Pecfect Powers." The Fibonacci Quarterly 7 (1969):476-81.
- 9. R. Steiner. "On nth Powers in the Lucas and Fibonacci Series." The Fibonacci Quarterly 16 (1978):451-58.
- 10. R. Steiner. "On Fibonacci Numbers of the Form $x^2 + 1$." In A Collection of Manuscripts Related to the Fibonacci Sequence: 18th Anniversary Volume. Santa Clara, Calif.: The Fibonacci Association, 1980, pp. 208-10.
- 11. H. C. Williams. "On Fibonacci Numbers of the Form k^2+1 ." The Fibonacci Quarterly 13 (1975):213-14.

THE ANDREWS FORMULA FOR FIBONACCI NUMBERS

MICHAEL D. HIRSCHHORN

University of New South Wales, Sydney, Australia

1. George E. Andrews [1] gave the following formulas for the Fibonacci numbers F_n ($F_1 = F_2 = 1$, $F_{n+2} = F_n + F_{n+1}$) in terms of binomial coefficients $\binom{n}{r} = \binom{n}{r}$:

(1.1)
$$F_n = \sum_{j} (-1)^{j} (n-1; [(n-1-5j)/2]),$$

(1.2)
$$F_n = \sum_{j} (-1)^{j} \quad (n; [(n-1-5j)/2]).$$

Hansraj Gupta [2] has pointed out that (1.1) and (1.2) can be written, respectively, as

(1.3a)
$$F_{2m+1} = S(2m, m) - S(2m, m-2),$$

(1.3b)
$$F_{2m+2} = S(2m+1, m) - S(2m+1, m-2)$$

and

(1.4a)
$$F_{2m+1} = S(2m+1, m) - S(2m+1, m-1)$$

(1.4b)
$$F_{2m+2} = S(2m+2, m) - S(2m+1, m-1),$$

where $S(n, k) = \Sigma(n; j)$, the sum being taken over those j congruent to k modulo 5, and has given inductive proofs of (1.3) and (1.4).

The object of this note is to obtain (1.3) and (1.4) by first finding $S(n,\ k)$ explicitly in terms of such familiar numbers as

$$\alpha = \frac{1}{2}(1 + \sqrt{5}), \beta = \frac{1}{2}(1 - \sqrt{5}).$$

2. We begin by noting that

(2.1)
$$(1+x)^n = \Sigma(n; j)x^j.$$

If we put x=1, ω , ω^2 , ω^3 , ω^4 into (2.1) in turn (where $\omega=e^{\frac{2\pi i}{5}}$), add the resulting series, and divide by 5, we obtain

(2.2a)
$$S(n, 0) = \frac{1}{5}(2^n + (1 + \omega)^n + (1 + \omega^2)^n + (1 + \omega^3)^n + (1 + \omega^4)^n).$$
In similar fashion,

(2.2b)
$$S(n, 1) = \frac{1}{5}(2^n + \omega^4(1 + \omega)^n + \omega^3(1 + \omega^2)^n + \omega^2(1 + \omega^3)^n + \omega(1 + \omega^4)^n),$$

$$(2.2c) \quad S(n, 2) = \frac{1}{5}(2^n + \omega^3(1 + \omega)^n + \omega(1 + \omega^2)^n + \omega^4(1 + \omega^3)^n + \omega^2(1 + \omega^4)^n),$$

$$(2.2d) \quad S(n, 3) = \frac{1}{5}(2^n + \omega^2(1 + \omega)^n + \omega^4(1 + \omega^2)^n + \omega(1 + \omega^3)^n + \omega^3(1 + \omega^4)^n),$$

$$(2.2e) \quad S(n, 4) = \frac{1}{5}(2^n + \omega(1 + \omega)^n + \omega^2(1 + \omega^2)^n + \omega^3(1 + \omega^3)^n + \omega^4(1 + \omega^4)^n).$$

Now, $1 + \omega = 1 + e^{\frac{2\pi i}{5}} = 2 \cos \frac{\pi}{5} \cdot e^{\frac{\pi i}{5}} = \alpha e^{\frac{\pi i}{5}}$, and similarly,

$$1 + \omega^{2} = -\beta e^{\frac{2\pi i}{5}},$$

$$1 + \omega^{3} = -\beta e^{-\frac{2\pi i}{5}},$$

$$1 + \omega^{4} = \alpha e^{-\frac{\pi i}{5}}.$$

so (2.2a) becomes

(2.3a)
$$S(n, 0) = \frac{1}{5}(2^n + \alpha^n e^{n\pi i/5} + (-\beta)^n e^{2n\pi i/5} + (-\beta)^n e^{-2n\pi i/5} + \alpha^n e^{-n\pi i/5})$$

= $\frac{1}{5}(2^n + 2\alpha^n \cos n\pi/5 + 2(-\beta)^n \cos 2n\pi/5)$.

In similar fashion,

(2.3b)
$$S(n, 1) = \frac{1}{5}(2^n + 2\alpha^n \cos(n-2)\pi/5 + 2(-\beta)^n \cos(2n-4)\pi/5),$$

(2.3c)
$$g(n, 2) = \frac{1}{5}(2^n + 2\alpha^n \cos(n - 4)\pi/5 + 2(-\beta)^n \cos(2n + 2)\pi/5),$$

(2.3d)
$$S(n, 3) = \frac{1}{5}(2^n + 2\alpha^n \cos(n + 4)\pi/5 + 2(-\beta)^n \cos(2n - 2)\pi/5),$$

(2.3e)
$$S(n, 4) = \frac{1}{5}(2^n + 2\alpha^n \cos(n + 2)\pi/5 + 2(-\beta)^n \cos(2n + 4)\pi/5).$$

It follows that, for every k,

(2.4)
$$S(n, k) = \frac{1}{5}(2^n + 2\alpha^n \cos(n - 2k)\pi/5 + 2(-\beta)^n \cos(2n - 4k)\pi/5).$$

SO

3. Now we are in a position to prove (1.3) and (1.4). We have

$$S(2m, m) = \frac{1}{5}(2^{2m} + 2\alpha^{2m} + 2\beta^{2m}),$$

$$S(2m, m - 2) = \frac{1}{5}(2^{2m} + 2\alpha^{2m} \cos \frac{4\pi}{5} + 2\beta^{2m} \cos \frac{2\pi}{5}),$$

$$S(2m, m) - S(2m, m - 2) = \frac{2}{5}\alpha^{2m} \left(1 - \cos \frac{4\pi}{5}\right) + \frac{2}{5}\beta^{2m} \left(1 - \cos \frac{2\pi}{5}\right)$$

$$= \frac{2}{5}\alpha^{2m} \cdot \frac{\sqrt{5}}{2}\alpha + \frac{2}{5}\beta^{2m} \cdot \frac{\sqrt{5}}{2}(-\beta)$$

$$= \frac{1}{\sqrt{5}}(\alpha^{2m+1} - \beta^{2m+1})$$

which is (1.3a). The derivations of (1.3b) and (1.4) from (2.4) are similar, and are omitted.

 $= F_{2m+1}$,

REFERENCES

- 1. George E. Andrews. The Fibonacci Quarterly 7 (1969):113-30.
- 2. Hansraj Gupta. The Fibonacci Quarterly 16 (1978):552-55.

SOME CONSTRAINTS ON FERMAT'S LAST THEOREM

J. H. CLARKE and A. G. SHANNON

The New South Wales Institute of Technology, Sydney, Australia 2007

1. INTRODUCTION

The proof of "Fermat's Last Theorem," namely that there are no nontrivial integer solutions of $x^n + y^n = z^n$, where n is an integer greater than 2, is well known for the cases n = 3 and 4. We propose to look at some constraints on the values of x, y, and z, if they exist, when n = p, an odd prime. The history of the extension of the bounds on is interesting and illuminating [3], as is the development of the theory of ideals from Kummer's attempt to verify Fermat's result for all primes [2].

2. CONSTRAINT ON &

It can be readily established that there is no loss of generality in assuming that 0 < x < y < z. Since $x \neq y$, $z - y \geq 1$ and $z - x \geq 2$. Following Guillotte [4], we consider $(x/z)^i + (y/z)^i = 1 + e_i$, where $e_0 = 1$, $e_p = 0$, and $e_i \in (0,1)$ for $1 \leq i \leq p$. Summing over i from 0 to p, Guillotte further showed that

$$1/(1-x/z) + 1/(1-y/z) > p + 1 + \sum_{i=0}^{p} e_i$$

from which we obtain

$$z(1/(z-x)+1/(z-y)) > p+2.$$