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Conj2.cXuA£'- If xv9 yv is a node f or 1 < k < F„ - 1 and if N Is ( ° d d ) , then 
K K — — N \ e v e n / 

( y*-' k) is also a node. 

Perhaps a reader can supply a proof. 

One would expect the nodes of an efficient cubature rule to be symmetric 
about the center of the square so as to give identical results for f(x, y), 
f(x9 1 - y), /(!•- x9 y)9 and /(l -a?, 1 - #) . This suggests modifying (1) to 

If 
Jo JQ 

F< 
-pro. m + -F(O. n + ' f(0, 0) + /(0, 1) + £ j?-(a:fc, i/fc) + j(^, 1 - yk) 

f(x,y)dxdy = 2(/ + x) — (2) 

Essentially, we have completed the square on the nodes. Some preliminary cal-
culations* indicated that this gain in accuracy more than compensated for doub-
ling the number of function evaluations. 

The performance of the method is reasonably good, although it is not com-
petitive with a high-order-product Gauss rule using a comparable number of 
nodes. It might be a useful alternative for use on programmable hand calcula-
tors which do not have the memory to store tables of weights and nodes and 
where the use of only one loop in the algorithm is a significant advantage. 

I also plan to investigate the effect of the symmetrization in higher-
dimensional calculations, but in such cases the number of nodes increases very 
rapidly with the dimensionality. 
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Begin with four nonnegative integers, for example, a9 b9 o9 and d. Take 
cyclic difference of pairs of integers (the smaller integer from the larger), 
where the fourth difference is always the difference between the last integer 
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d and the first integer a. Repeat this process on the differences. If we start 
with 8, 3, 5, 6 and follow the procedure described above, then the process ter-
minates in the sixth row with all zeros. Now we have the following problem due 
to S. J. Bezuszka and M. J. Kenney [1], 

VJiohZom'' Is there a selection procedure that will yield sets of four starting 
integers which terminate with all zeros on the 7th row, the 8th row9 . .., the 
nth row? 

Bezuszka and Kenney are of the opinion that the solution to this problem 
is an interesting application of Tribonacci numbers. 

First we note the following easy facts, which we shall use later. 
1. If we start with a set of four nonnegative integers-—a, b9 Q9 d—that 

terminates with all zeros on the ith row, then the set of four integers a + x9 
b + x9 o + x9 d + x, where x is a positive integer, also terminates with all 
zeros on the ith row. 

2. The set of four nonnegative integers a, b9 o9 d gives the same number 
of rows as the set na9 rib9 nc9 nd9 where n is a positive integer. 

3. The set a? - a, x - b9 x - c9 x - d yields the same number of rows as 
a, b9 c9 d9 provided none of x - a, x - b9 x - o9 x - d is a negative integer. 
Again, the set x - a9 x - b, x - c, x - d yields the same number of rows as a, 
b9 o9 d. We can take the integer x big enough to make each of x - a, x - b9 
x - o9 and x - d nonnegative. 

4. If in place of a9 b, c, d any cyclic or reverse cyclic order of a, b9 
o9 d is taken as the set of four starting numbers, we again get the same num-
ber of rows. For example, 0, 0, a, b being the reverse cycle of 0, 0, b9 a will 
terminate in the same number of steps. 

From the above, it is clear that any set of four nonnegative integers a, 
b9 o9 d can be replaced by the set 0, u, v9 w9 which yields the same number of 
rows as a9 b9 o9 d* 

Let a, b9 c9 d he the four starting numbers. Denote a19 b19 c19 dx as v2% 
a29 b29 o2, d2 as r3; ..-.; and A19 B19 C19 D^ as R2; A2, B2, C2, D2 as i?3 ; ... . 
For example 

^ » #i s C19 D± 

a, S, c9 d 
a19 b19 a19 dx 

Suppose we are given four nonnegative integers a, b9 o9 d* Is it always possi-
ble to find i?2? That is, can we find four nonnegative integers t, u9 V9 W that 
will yield a, b9 o9 d in the second row? 

If we start with four nonnegative integers t9 u9 V9 W as our first row, 
where t+u+ v + w is either odd or even, and get a, b9 o9 d in the second row, 
then it is easy to see that a + 2? + e + d is always even. So a, b9 o9 d with an 
odd total can never be the second row of any set of four nonnegative integers 
t9 u9 V9 W« Hence, R2 is not possible if a + b + c + d is odd. Again, Z?3 is not 
possible if a, bs o9 d are such that a and b are odd (even) and o and d are 
even (odd) , for then, if i?2 exists, R2 will have three odd and one even or one 
odd and three even, thereby making Ax + B\ + C± + Dx odd and i?3 impossible. 

If the four starting numbers are a, b9 o9 d and R2 exists for this set of 
numbers, then after a little calculation it can be seen that we must have one 
of the following situations: 

(i) a = b + o + d (v) a + b = c + d 
(ii) b = a + a + d (vi) a + o = b + d 
(iii) c = a + b + d (vii) a + d = b + o 
(iv) d = a + b + c 



316 ON A PROBLEM OF S. J. BEZUSZKA AND M. J. KENNEY ON 
CYCLIC DIFFERENCE OF PAIRS OF INTEGERS [Oct. 

Hence, if we are given a, b9 c, d where none of the above seven cases holds, 
then i?2 is impossible. 

Since any set of four nonnegative integers t9 u9 v9 w can be replaced by 
0, a, b9 c (c _> a) without changing the number of steps, from now on, we take 
0, a, b9 c (c _> a) as our starting numbers. 

In case the four starting numbers are 0, a9 b9 c (c >_ a) , then R2 is pos-
sible if either b = a + a or c = a + b. If we have 0, a, a+e, o9 we can take 
R2 as 

(i) a, a, 0, a + c (iii) 
(ii) o9 o9 a + o9 0 (iv) 

If we have 0, a, 2?, a + 2?, we can take R2 as 

(i) 0, 0, a, a + b (iii) 
(ii) a + 2?, a + 2?, fc, 0 (iv) 

The two sets of four starting numbers a19 b19 
to be complements of each other if a± + a2 = 

a + a9 a + c9 o9 a + 2c or 
a + e , a + c9 2a + c, a 

a, a, 2a, 2a + b or 
2?, 2?, a + & , a + 22? 

cls <ix and a2 5 2?2, c2, d2are.sa±6. 
b\ +b2 = cx + c2 = d± + d2. If 

two sets of four starting numbers are complements of each other, they terminate 
on the same number of rows. Now a, a, 0, a + c and o9 o9 a + c9 0 are comple-
ments of each other and 0, 0, a, a + b and a + b, a + b9 b, 0 are complements 
of each other. 

TkdQfizm 1 •' If the set of four nonnegative integers 0, a, b9 c9 where e >_ a + b 
terminates in k steps, then the set of four integers 0, a - b9 2o-b9 kc-b-a 
terminates in k + 3 steps. 

VK.00^' Let the four starting numbers beO, c - b9 2c - b9 kc - b - a. They are 
clearly nonnegative. Then we have 

0, c - b9 2c - b9 kc - b 
b9 c9 2c - b9 kc - b 
b9 c - a, 2c - b9 3c - a 
b9 c + a - b* c + b -a, 3c -a 

- a 
- a 

- b 
The fourth row can be rewritten as x, 2a + x9 2b-\-x9 2c+ x where x = c - a - b9 
a nonnegative integer. Now, the four starting integers x9 2a + x9 2b + x9 2c+ x 
will take the same number of steps as 0, 2a, 2b, 2c for termination. Again, 
0, 2a, 2b, 2c will yield the same number of steps as 0, a, b9 c. Thus the set 
0, c - b9 2c - £>, 4 c - Z ? - a needs three steps more than 0, a, b9 c for termi-
nation. Hence, the theorem is proved. 

Since Ac - b - a >_ (c - b) + (2c - 2?) - 3c - 22?, taking 0, c - 2?, 2c - b9 
be - b - a as 0, als bl9 cl9 where ox >_ax + bl9 we can get four nonnegative 
integers 0, c1 - b\, 2cx - 2?ls and 4ci - &i - a\ which will yield three steps 
more than 0, c - b9 2c - b9 he - b - a. We can continue this process n times 
to get 3n steps more than the number of steps given by 0, a, b9 c. 

If we have 0, a, b9 c9 where o < a + b but greater than each of a and b9 
then we consider the reverse cycle of its complement c, c - a, c - Z?, 0, that 
is, 0,c-2?, c - a , c. Now Theorem 1 can be applied to 0, c - b9 c - a , c for 
c > (c - b) + (c - a) . 

TkdOK.2J(n 2: If the set of four nonnegative integers 0, a, 0, 2?, where b > a, 
terminates in & steps, then the set of four integers 0, a + 2?, a + 2b9 a + 42? 
terminates in & + 3 steps. If a > £, we can take 0, 2b9 32?, a + 42?. 

Vfiooj'* The proof is easy and is left to the reader. 

Since a + 42? > (a + 2?) 4- (a + 22?) for b > a, we can apply Theorem 1 to the 
new set. Hence, if we start with 0, a, 0, 2?, 2? > a, which terminates on the 5th 
row, we get two different sets of four starting numbers, one from Theorem 1 and 
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the other from Theorem 2, each of which terminates on the 8th row. They are 
given by 0, 2?, 22?, kb - a and 0, a+2?, a + 22?, a + 42?. Their reversed comple-
ments, given by 0, 2b - a, 3b - a, kb - a and 0, 2b, 3b, 42? + a will also ter-
minate on the 8th row. 

Since 0, a, 0, b and 0S a + x9 x9 b + 2x (2? > a) have the same number of 
steps, we get another set 09 b + xs 2b + 3x9 kb - a + 6x9 by Theorem 1, which 
also terminates on the 8th row. Again, 0, 2>, 2b, kb - a and 0, b + x9 2b + x9 
kb - a + 2x have the same number of steps. 

We give examples of some sets of four integers that terminate on the 3rd, 
4th, 5th, 6th, and 7th row. We have not included their complements in our list. 

1. 0, 0, 0, a (a > 0) five rows 

2. 0, 0, a, a (a > 0) four rows 
0, 0, a, a + 2?; 0, 0, a + xs a + b + 2x (0 < b <_ a) five rows 
0, 0, a, 2a + x (x 0); 0, 0, a, na + x (n >_ 3) — ...... seven rows 

3. 0, a, 0, a (a > 0); 0, a, 2a, a (a > 0) three rows 
0, a, a + x9 x (x ^ a); 0, a + x9 x9 a + 2x (x > 0); 
0, a + x, a, 2a + x (a > 0) four rows 
0, a, a, 2a + x (x > 0); 0, a, a, 2a -as (x £ a) five rows 
0, a, 0, b (a ^ 2?, not both zero); 
0, a + x9 x9 b + 2x (b ^ a, not both zero) 
0, a + x , a, a + 2# five rows 

4. 0, a , a + x s 2a + x% 0, # , a + # , a + 2x (a,a: > 0) s ix rows 
0, a, 2a, 5a (a > 0 ) ; 0, 3a, 4a, 5a (a > 0) . . . . s ix rows 
0, a + x9 2a + x9 3a + x (a £ 09 x > 2a); 
0, a - x9 2a - x9 3a - x (a <. x < a) s ix rows 
0, a , a 4- x9 a + x {x >_ a > 0) five rows 
0, a, a + x9 a + x (x < a); 0, 3a, 5a, 4a (a > 0) seven rows 

The above list contains many sets of four nonnegative integers 0, a, b9 o 
where o >_ a + b. Hence, Theorem 1 can be applied to any of these sets to get 
three rows more than the particular set of four numbers has. For example, 

(i) 0, a, 0, a -»- 0, a, 2a, 3a -*• 0, a, 4a, 9a •> ... can be continued 
n - 1 times to get 3n steps. 

(ii) 0, 0, a9 a (a > 0) •* 0, 0, a, 3a •> 0, 2a, 5a, 11a->• ... can be con-
tinued n - 1 times to get 3n + 1 steps. 

(iii) 0, 0, 0, a (a > 0) -> 0, a, 2a, 4a -»• 0, 2a, 6a, 13a-*• ... can be con-
tinued n - 1 times to get 3n + 2 steps. 

Hence, we have a selection procedure that will yield sets of four start-
ing numbers that will terminate with all zeros on the nth row, n = 6,7,8,... . 

Below we note some interesting facts: 

1. 0, a, a9 a (a > 0); 0, a, a, a +• x {x £ a); 0, a, a + x9 a {x £ a); 
and 0, a, a + x9 a + x {x _> a > 0) have five rows. 

2. 0, 2?, 22?, 42? - a (2?>0)and0, b+x9 2b + x9 kb+2x have eight steps. 

3. 0, x9 a + x9 a + b + 2x gives three steps more than 0, 0, a, a + b 
(0 < b <_ a9 x > a). 
0, 1, 1 + a, 1 + a + a2 (a > 2) gives three steps more than 1,0, a, 
a + 1. • 

We know that 0, s, 0, s (s ̂  0) terminates on the 3rd row. We can write 
s = b - a in many ways. Then 0, b - a, 22? + 2x, 3b ± a + kx gives three steps 
more than 0, 2? - a, 0, b - a. Similarly, 0, m9 2m - £, 5m - 3£ + # gives three 
steps more than s9 0, s, 2s, where s = m - I. Again, 0, a, 2a, 5a and 0, 3a, 
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4a, 5a gives three steps more than a, 0, a, 2a. Hences we can have many sets 
of four numbers of the form 0, a, b9 c having the same number of steps. 

However, we can tell the number of steps of the reduced set 0, a, b9 c in 
the following cases: 

0, 0, 0, a (a > 0) five rows; 0, 0, a, a (a > 0) four rows; 
0, 0, a, b (a < b <_ 2a) f ive rows; 0, 0, a, 2a + x (x > 0) seven rows; 
0, 0, a, na + x (n _> 3) seven rows; 0, a, 0, a (a > 0) three rows; 
0, a, 0, b (a ̂  b) five rows; 0, a, £, c (b-a + c, a = c > 0) three rows; 
Q9 a, b, c (b ~ a + e, a ± a) four rows; 
0, a9 b, c (c = a + &, a = b > 0) four rows; 
0, a, &, c (<? = a + &, a < b) six rows; and 
0, a, b9 c (c = a + b, a > b) four rows. 
From the above, it is clear that the only case which presents difficulty 

in deciding the number of steps without actual calculation is 
0, a, b, c (aba £ 0, b ^ a + c 9 o £ a + b), 

where we can assume a < o. 
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In g e n e r a l , i t i s d i f f i c u l t t o p r e d i c t a t a g lance t h e u l t i m a t e behav io r 
of a l i n e a r r e c u r r e n c e sequence . For example, i n some problems where t h e s e -
quence r e p r e s e n t s t h e v a l u e of a p h y s i c a l q u a n t i t y a t v a r i o u s t i m e s , we might 
want t o know i f t h e sequence i s always p o s i t i v e , or a t l e a s t p o s i t i v e from some 
p o i n t on. 

Consider t he two sequences : 
w0 - 3 , w1 = 3 . 0 1 , w2 = 3.0201 

and 
wn + 3 = 3.0lwn + 2 - 3 .02^ n + 1 + l.01wn fo r n _> 0 ; 

v0 = 3 , i?1 = 3 . 0 1 , v2 = 3.0201 
and 

Vn+3 = 3yn+2 " 3«01yn+l + l-01^n for n > 0, 

The sequence {wn} is always positive, but the sequence {vn} is infinitely often 
positive and infinitely often negative. This last fact is not obvious from 
looking at the first few terms of {vn} since the first negative term is v7B5. 


