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Conollany 7: .
L 1ifn=20
(-D"2 if n = 2,

k;)po; Zm(n - K ;(_1)PA2m-‘l(k - 1/2(3172 tr)) = for t =1, 2, ...,

0 otherwise.
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FIBONACCI AND LUCAS NUMBERS OF THE FORMS w? -1, w?® % 1
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INTRODUCT [N

Let F, and L, denote the nth Fibonacci and Lucas numbers, respectively. AlL
such numbers of the forms w?, w®, w? + 1 have been determined by J. H. E, Cohn
[2], H.London and R. Finkelstein [8], R. Finkelstein [4] and [5], J. C. Lagarias
and D. P. Weisser [7], R.Steiner [10], and H. C. Williams [11]. In this arti-
cle, we find all Fibonacci and Lucas nubmers of the forms w? -1, wd £ 1.

PREL IMINARIES

(1) L, =w?>+n-=10r3
(2) L, =2w%+n =0 or %6
(3) Lp=uwd-»n=zl

(4) Lp=2w®>n=0

(5) L,=4w® >n=13

(6) Lon = (-1)"Ly
(1) Fps Fruly) = (Bys Lyy) = 1

(8) 3|F, iff 4|n

(9) L,, =1L%- 21"
(10) Ly,yy = Lplpsr - (-1
(11) 1If (2, y) = 1 and xy

and w = w.
(12) Fyps1 = Fopsralo, =1
(13) Fyp = Fop1lpps1 — i

(14) Fy,_p =F,, L, -

)

n
= w", then x = u”*, y = v", with (u, v) =1
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(15) Fyusp =

(16) Flm Z-7'2)1+1[’2n—1 +1

(17) Fy,_p = Fap_2Lay + 1

(18) Lpmyn =F,_1L, + F, L,

(19) The Diophantine equation y?-D = x%®, with y > 0, has precisely the solu-
tions: (-1, 0), (0, 1), (2, 3) if D =1; (1, 2) if D = 3; (1, 0) if D =
-1; no solution if D = -3.

I+

Remanks: (1) and (2) are Theorems 1 and 2 in [2]. (3) is Theorem 4 in [8],
modified by (6). (4) and (5) follow from Theorem 5 in [7]. (6) through (11)
are elementary and/or well known. (12) through (17) appear in Theorem 1 of [3].
(18) is a special case of 1.6,p. 62 in [1]. (19) is excerpted from the tables
on pp. 74-75 of [6].

THE MAIN THEOREMS

Theorem 1: (Fps Lysp) |Ln-

Proog: By (6), it suffices to show that (F,, Lm+n)]Ln. Let d = (Fs Lpyn) -
(18) + d|Fp_1Ly,s (7) + d|Ly.

Conolblary 1: (F,, Lys,) = 1 or 3.
Proof: Let m = 2 in Theorem 1.
Conollarny 2: (Fopsrs Lopzr) = 1.
Proog:  (8) ~ 3* F,,+1- The conclusion now follows from Corollary 1.

Lemma 1: Let (F;, Lj) =1 and F;L; = wk # 0. Then k = 2 implies J§ = 1 or 3;
k = 3 implies j = 1.

uk, L; = vk, The conclusion follows

Proo4: Hypothesis and (11) imply F;
from (1) and (3).

Consider the following equations:
(1) F, = wk -
(i1)
(iii) L, = wk -
(iv) L, = wk +

shj
]
g
P
+
[ R O

For given k, a solution is a pair: (m, w). If lwl <1, we say the solution is
trivial.

Lemma 2: The trivial solutions of (i) through (iv) are as follows:

(i) (0, 1), (-2, 0) for all k; (0, *1) for k even.

(ii) (%1, 0), (2, 0), (£3, 1) for all k; (0, -1) for k odd.
(iii) (-1, 0) for all k.

(iv) (0, 1), (1, 0) for all k.

Proog: Obvious.
Theorem 2: 1If k = 2, the nontrivial solutions of (i) are (4, 2) and (6, 3).

Proog: Case 1.—Let m = 4n * 1. Hypothesis and (12) + F,,.1L,, = w? # 0.
Theorem 1 -+ (F,, .15 L,,) = L. Lemma 1 -~ 27 = 1 or 3, an impossi-
bility.

Case 2.—Let m = 4n. Hypothesis and (13) = F,,_1L,,,1 = w? # 0.
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Case 2.—continued

Corollary 2 and (11) +~ L,,_, = v°.
Now (1) »2n + 1 =10or 3 >7n =0 or 1.
Hypothesis *m# 0 »n # 0 +n=1>m=4 »w = 2,

Case 3.—Let m = 4n -~ 2. Hypothesis and (14) - F,,L,,_, = w? # 0.

Let d = (Fy,5 Ly,_,). 1If d = 1, we have a contradiction, as in Case 1.
If d # 1, then Corollary 1 -~ d = 3. Hence, (F,,/3)(Ly,-,/3) = W/3)2.
Now (11) + Fp, = 3u®, L,,_, = 3v%. But F, = 3u’ +n =0 or 2 by a re-
sult of R. Steiner [10, pp. 208-10].

Hypothesis +m # =2 >+ n # 0+>n =2 +m=6 ~w = 3.

2

Theonem 3: If k = 3, then (i) has no nontrivial solution.

Proog: Case 1.—Let m = 4n +* 1. As in the proof of Theorem 2, Case 1, we
have Lemma 1 » 2n = *1, an impossibility.

Case 2.—Let m = 4n. As in the proof of Theorem 2, Case 2, we have
Lops1 = V> Now (3) > 21+ 1 =#1+>n =0 or -1.

Hypothesis > 7 # 0 #n=-1+m= -4 +~F_, = -3 =w® - 1, an impos-
sibility.

Case 3.—Let m = 4n -~ 2. As in the proof of Theorem 2, Case 3, we
have Foplopn_p=w® # 0, (F, » I, ,)=3, so Fy, =3u®, Ly,_, = 30°.
Now Theorem 2 of [7] » n =2 >m 6 > F,=8 = w? - 1, an impossi-
bility.

2

Theorem 4: 1If k = 3, then (ii) has no nontrivial solution.

Proog: Case 1.—Let m = 4n * 1. Hypothesis and (15) + F,,L,,+1 = w® # O.
Theorem landLemma 1 - 2n * 1 = 1 > n = 0 or *1 - m = *1, *3, %5,
But F,g = 5 # w3 + 1. Therefore, m = %1, +3 (trivial solutions).

Case 2.—Let m = 4n. Hypothesis and (16) + F,,, 1L,,_, =w® # 0,
n# 0.

Theorem 1 and Lemma 1>2n - 1 = tl+n = 1->m=4~+F, =3 =
an impossibility.

Case 3.—Let m = 4n + 2. Hypothesis and (17) = Fy,Lon42 = w° # 0.
Asin the proof of Theorem 3, Case 3, we have F, = 3ud, L 3
an impossibility.

|
E:m
+
—

2n4+2

Theorem 5: 1If k = 2, then the nontrivial solutions of (iii) are (%2, *2).

Proof: Case 1.—Let m = 4n. ‘
Hypothesis and (9) ~ L%, -2 =w? -1 + L}, -w? =11, -w-=
Ly, +w=%1+w=0>17L,, =%1, an impossibility.

Case 2.—Let m = 4n + 2.
H{pothesig and (9)2+ L, ., +2=w -1 » w? - L§n+1 =3 >Ly,41 =
1, w = % m= *2.

= 4n + 1. Hypothesis and (10) + L,,Ly,41 = w2,

L,, = u*, L,,,, = v?, contradicting (1).

Case 3.—Let
(7) and (11)
2

m

N

Case 4.—Let m = 4n - 1. Hypothesis and (10) + L,,L,,_1 + 2 =w".

(9) and (10) » {£2 - 2(-1)"HL,L,_, + (-1)"} + 2 = w?. We have:
0L, . + (-1)"L% - 2(-1)"L,L,_, = w?.

Let M, = L°L + (—1)”(Ln - 2L,_,). Now, L,M, = w?. Let p be an

nn-1
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Case 3.—continued

odd prime such that p¢|L,. (7) » p[HM, + p°l|lw® + 2|e. Therefore,
we must have [, = u? or 2uZ.

(1) and (2) n =0, 1, 3, or 26 > m = -1, 3, 11, 23, -25. By di-
rect computation of each corresponding L,, we obtain a contradic-
tion unless m = -1 (trivial solution).

If k = 3, then (iii) has the unique nontrivial solution (4, 2).

Theorem 7:
Proog:

Case 1.—Let m = 4n.

Hypothesis and (9) - L%n -2=w-1 +~L§n -1 = wd.
Now (19) + L,, =0, 1, or 3 +L,, =3 +2n=2+m=4 +~w = 2.
Case 2.—Let m = &n + 2.

T —— 3

Hypothesis and (9) +~L§n+l +2=w -1 +~L§n+l + 3 =w’,
contradicting (19).

Case 3.—Let m = 4n + 1. Hypothesis and (10) + L,, Dy, 41= w°.
(7) and (11) ~ L,, = ud, Ly, 1 = v3, contradicting (3).
Case 4.—Let m = 4n - 1. As in the proof of Theorem 5, Case 4, we
have L M, = wi. If p is an odd prime such that pﬂan, then prlwn,
so that p?|w® -+ 3|e. Therefore, L, = u®, 2u®, or &u’.

But (3), (4), and (5) »n =0, *l, 0or *3 > m = -1, 3, -5, 11, or -13.
By direct computation of each corresponding L,, we obtain a contra-
diction unless m = -1 (trivial solution).

If k¥ = 3, then (iv) has no nontrivial solution.

Case 1.—Let m = 4n.

P41 -1, -3 =uw.

Hypothesis and (9) +-L§n -2 =uw
0 (trivial solution).

(19) > Ly, =2, w=1>n=0->m

n+

Case 2.—Let m = 4n + 2.
Hypothesis and (9) + L3,,, + 2 =w® + 1 » L% ., + 1 = w’.
(19) » Ly,41 =0, w =1, an impossibility.

Case 3.—Let m = 4n - 1. Hypothesis and (10) + L,, Lo, = w°.
3

(7) and (11) + L,, = u, L,,_ 1 = v3, contradicting (3).

Case 4.—Let m = 4n + 1. Hypothesis and (10) + L,,L,,,1 - 2 = w°.

(9) and (10) » {L; - 2(-1)"HL,L,,; - (-1)"} = 2 = w3. We have:
L'L ., - (-D"L% - 2(-D)"L L ., = w’.

M n+1 nn+1l
Let M, = I’L,,, - (-1)"(0, + 2L,,,). Now, L,M, =w>. As in the
proof of Theorem 6, Case 4, n = 0, *1, or 3. Therefore, m =1,
-3, 5, =11, 13. By direct computation of each corresponding L,, we
obtain a contradiction unless m = 1 (trivial solution).

Remark: Cases 1and 2 could also be disposed of by appeal to Theorem 13 in [9].

SUMMARY OF RESULTS

Fp =w? - 1+w=0, xl, x2, 23
F,=w’-1>w=0,1
F,=w+1l-+w=-1,0,1
Lp=w -1>w=0, 2

Ip=w® -=1>w=0, 2
L,=w+1-»w=0,1

E]



1981] THE ANDREWS FORMULA FOR FIBONACC| NUMBERS 373
REFERENCES

1. L. Carlitz and H. H. Ferns. '"Some Fibonacci and Lucas Identities." The
Fibonacci Quarterly 8 (1970):61-73.

2. J. H. E. Cohn. '"Square Fibonacci Numbers, Etec." The Fibonacci Quarterly
2 (1964):109-13.

3. U. Dudley and B. Tucker. '"Greatest Common Divisors in Altered Fibonacci
Sequences." The Fibonacci Quarterly 9 (1971):89-92.

4. R. Finkelstein. '"On Fibonacci Numbers Which Are One More Than a Square."
J. reine angew. Math. 262/263 (1973):171-82.

5. R. Finkelstein. "On Lucas Numbers Which Are One More Than a Square." The
Fibonacei Quarterly 13 (1975):340-42.

6. O. Hemer. '"Notes on the Diophantine Equation y? - k = x2°." Ark. Mat. 3
(1954) :67-77.

7. J. C. Lagarias and D. P. Weisser. "Fibonacci and Lucas Cubes.'" The Fibo-
nacei Quarterly 19 (1981):39-43.

8. H. London and R. Finkelstein. '"On Fibonacci and Lucas Numbers Which Are
Pecfect Powers.'" The Fibonacei Quarterly 7 (1969):476-81.

9. R. Steiner. "On nth Powers in the Lucas and Fibonacci Series.'" The Fi-
bonaceil Quarterly 16 (1978):451-58.

10. R. Steiner. '"On Fibonacci Numbers of the Form x? + 1." 1In A4 Collection
of Manuscripts Related to the Fibonacci Sequerce: 18th Anniversary Volume.
Santa Clara, Calif.: The Fibonacci Association, 1980, pp. 208-10.

11. H. C. Williams. "On Fibonacci Numbers of the Form k% + 1." The Fibonacci
Quarterly 13 (1975):213-14.

FHWH®
THE ANDREWS FORMULA FOR FIBONACCI NUMBERS
MICHAEL D. HIRSCHHORN
University of New South Wales, Sydney, Australia
1. George E. Andrews [1] gave the following formulas for the Fibonacci
numbers F,, (F1 =F,=1,F  , =F, + F;+1) in terms of binomial coefficients

((n;

(1.1)

(1.2)

0 - )

=
1]

DY -1 (-1 - 55)/2D),
J

F, = 1Y s [ -1 - 50)/2]).
J

Hansraj Gupta [2] has pointed out that (l.1)and (1.2) can be written, re-

spectively, as

(1.3a) F, w1 =5@m, m)y - S2m, m - 2),

(1.3b) Fomiy =58@2m+ 1, m) - S(2m+ 1, m - 2)
and

(1.4a) Fope1 =S5Q@2m+ 1, m) = SC2m+ 1, m~- 1)

(1.4b) Fomen s@2m+ 2, m) -S@2m+ 1, m - 1),

where S(n, k) = L(n; J), the sum being taken over those j congruent to kK modulo
5, and has given inductive proofs of (1.3) and (1.4).



