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SUMMATION OF SECOND-ORDER RECURRENCE TERMS 
AND THEIR SQUARES* 

DAVID L. RUSSELL 
Bell Laboratories, Holmdel, NJ 07733 

Consider the l inear recurrence sequence {Rn} defined by Rn - pRn_± + Q^n-i 
for a l l n , where p and q are r e a l . I n i t i a l conditions for any two consecutive 
terms completely define the sequence. We are in te res ted in finding sums of the 
form 

Y, Ri and X Ri 
for a rb i t r a ry values of p and q. 

lkn.OK.Qjn 1: 

H Ri = \TTT^ T^R" + * » + i > " " , • If P + q - 1 t 0. (1) 

E Ri m T T T ^ K +n(qRt
 +-ffx))Lx.1» 

x±i±y L^ jn x 

x<.t<.t/ L J 

if p + q - 1 = 0, 4 + 1 + 0. (2) 

if p + 4 - 1 = 09 q + 1 = 0. (3) 

The solution to the recurrence relation is determined by the roots of the 
characteristic equation x2 - px - q = 0 and by the initial conditions. 

If the two roots a and 3 of the characteristic equation are distinct and 
different from 1, then the solution of the recurrence is Rn = aan + b&n

 9 where 
a and b are constants determined by the initial conditions. The sum may be 
calculated easily from the formula for the sum of a geometric series and from 
the equation 

(a - l)(q + a) = (p + q - l)a. (4) 

If a is a double root of the characteristic equation and a ̂  1, then the 
solution of the recurrence is Rn =aan +bnan, where again a and b are constants 
determined by the initial constants. Multiplying (4) by an/(a - 1), and taking 
the derivative with respect to a gives the following equation: 

<pw-i + in + l)a" = < P + ? - 1)[nf_+[: <*+1>a"l; (5) 

the appropriate summation formula can be simplified with (5) to give (1). 
Equations (2) and (3) apply to the degenerate cases where the roots of the 

characteristic equation are (p - 1, 1) and (1, 1), respectively. The corre-
sponding summations have nongeometric terms in them and simplify to different 
forms. 

The results of Theorem 1 are well known, particularly equation (1) (see, 
for example, [2] and [3]). Often, however, the need for separate proofs for 
the cases of a double root and a root equal to 1 is not recognized. In the 
special case that p = q = 1, equation (1) applies, and we have, as simple cor-
ollaries, formulas for the summation of Fibonacci and Lucas numbers: 

*This work was performed In part while the author was with the Computer Sci-
ence Department of the University of Southern California in Los Angeles. 
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Z Fi = Fn+2 " L L Li - £n+ 2 " 3-
l < t < n 1 ±i±n 

In Theorem 1 t h e r e s u l t s depend on t h e r o o t s of t h e c h a r a c t e r i s t i c e q u a t i o n . 
I f we c o n s i d e r t h e sum of t h e squares of t h e r e c u r r e n c e t e r m s , t h e r e s u l t s de -
pend on t h e p o s s i b l e v a l u e s for t he products of two r o o t s . 

Thzotim 2: Let {Rn} s a t i s f y 

and l e t {Sn} s a t i s f y 

for a l l n and a l l r e a l p , q. 

Rn = P*„_! + <7*„_2 

HRisi 
x±i±y 

V d - ^ n ^ n + P ^ n ^ n + i + P ^ n + A + d - ^ n + A + l" 
( q + l ) ( p + q - l ) ( p - q + l ) 

i f q + W 0 s p + q - l O , p - q + W O . 

n = y 

(6) 

2>^ 
# £ i £ y 

-i?n£n - - ^ (bSn + dRn) + M n 
n = z / 

where fc = (qi?0 + i?i) / (q + 1) , d = (qS0 + S1) / (q + 1) , 

Z>*5* -
x<%±y 

-Ry,Sn 

qA - 1 
- ( - l ) n ( f c£ n + di?n) + M n 

n = z/ 

n = a? - 1 

where b = (qR0 - Rx) / (q + I) , d = (qS0 - Sx)Kq + 1 ) , 
i f q + l ^ O , p + q - 1 ^ 0 , p - q + 1 = 0 . 

(7) 

(8) 

ZBiSi 
x<.i<.y 

RQSQ + ^ 1 ^ 1 
-n + 

i?050 - R1S1 (-l)n 

£. t. ^ \n = x -1 

± f q + l ± 0 , p + q - l = 0 , p - q + l = 0 . 

(9) 

x<i±y 

1 
(a2 - 1) ' a 2 - 1 

-+ (be + ad)n + M-
1 - a 2 W 

n = y 

where a = h(p + (p2 - 4)"2)9 and 
a = (a/?! - i?0) 5 
2? = a(ai?0 - i ? x ) , 
a = (a^x - £ 0 ) » 
d = a ( a £ 0 - 5X) , 

i f q + l = O s p + ( | - W 0 , p - q + W O -

(10) 

E R.S. 
x±i±y 

RQS0 + %( i? l S l - fl.xg.,)"^^ 1 } 

" + ( H l . f l o ) ( 5 l . 5 p ) » f i L ± ^ L J L l i 
i f q + 1 = 0 , p + g - 1 = 0 , p - g + 1 ^ 0 . 

(11) 
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+ ( i ? 1 + i ? 0 ) ( 5 1 + g o ) W ( W + 1 > 6
( 2 w + 1) 

if (7 + 1 = 0, p + q - l £ 0 9 p - q + l = 0. 

n(n + 1) 
(12) 

n = y 

n = x -1 

Vtioofc The key relation, analogous to (4), is the following, where a and 3 are 
roots of x2 - px - q = 0, ag ± 1, a2 ̂  1, g2 ̂  1: 

an + l g n + l _ q 2 ( l _ ^ ) a ^ n + p q a n g n + l + p^n+lgn + ( 1 , ^g^lg"*! 

ag - 1 (q + l)(p - q + l)(p + q - 1) ' (i J ; 

This is proved by considering the following equation (recall that a2 - pa + q 
and g2 = pg + <?) : 

(ag - 1)[<72(1 - q) + pqg + pqa + (1 - <?)ag] 
= a g q 2 ( l - < 7 ) + a g 2 p ^ + a2gp<? + a 2 g 2 ( l - ( ? ) - q2(I - q) - p^g - pqa - ( 1 - <?)ag 
= a$q2(l-q) + a (pg + q)pq + (pa + ^ )gp^ + (pa + q) (pg + q) (1 - q) 

- q 2 ( l - ^ ) - p^g - pqa.~ ( l - q ) a e (14) 
= a g [ < 7 2 ( l ~ q ) + p2<? + p2<? + p 2 ( l - < ? ) - ( 1 - ? ) ] 
= a g [ p 2 ( q + l ) - (q2-i)(q~D] 
= ag(<? + l ) ( p + q - l ) ( p - q + 1) . 
Now ag - 1 i s p o s s i b l e i f and only i f (1) p + q - 1 = 0 ( t h e r o o t s a r e p - 1 

and 1 ) ; (2) p - <? + 1 = 0 ( t h e r o o t s a r e p + 1 and - 1 ) ; o r (3) q + 1 = 0 ( t h e 
r o o t s a r e r e c i p r o c a l s ) . Thus we can d i v i d e b o t h s i d e s of (14) by 

(ag - l)(q + l ) ( p + q - 1 ) (p - q + 1 ) ; 
multiplying by angn gives (13). 

In the remainder of the proof, we use a and g to represent roots of 

x2 - px - q = 0, 

we use a, b9 cs d to represent constants determined by initial conditions of 
the recurrences, and we let 

A = (q + l)(p + q - l)(p - q + 1). 
If omitted, the limits of summation are understood to be x and y ; the right-hand 
sides are to be evaluated at n = y and n = x - 1. 

Suppose that a ̂  g. Then the solutions to the recurrences are 

Rn = aan + b$n and Sn = ean + dS>n. 

t^RiSi = A£(aa^ + Z?6 i ) (ca i + dp) 
= AZ(aca2i + ada1^ + boa11 ' 

A aca2n + 2 ^ a d ( a g ) n + 1 _̂ fcg(ag)' ^ = A —-— + r •+ 
1 ag - 1 ag - 1 gz - 1 

Since q + i ̂  0, p + ? - 1 + 0, and p - q + 1 f 0, we know that a2 + 1, g2 + 1, 
and ag ̂  1. Equation (13) can thus be applied to each term individually; when 
terms are collected the desired result is obtained: 

b£RiSi = q2(l - q)[acanan + adan$n + bcan$n + 
+ pq[acanan+1 + adan$n + 1 + bcan$n+1 + Mg ng n + 1 ] 
+ pq[acan + 1an + adan + 1$n + bcan + 1$n + Mg n + 1 g n] 
+ (1 - q)[aoan+1an+1 + a^an+1gn+1 + Z?^an+1gn+1 + Mg n + 1 g n + 1] 

= <7 (1 - q)RnSn + pqRnSn+i + pq^n+i^n + 
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If a is a double root of x2 - px - q = 09 then the sum takes the following 
form: 

bin i; Si = AZCac^ + biai)(aai + dia1) (15) 

- AZ(aca2i + adiu2i + baia2i + bdi2a2i). 
By taking various derivatives of (13), it is easy to show that the following 
expressions hold: 

AEio^B* = q2(l - q)nan$n+pq(n + l)an3n+1 + pqnan + 1$n + (1 - (7) (n + l)an+13n + 1 

= q2(l - q)nangn + p<7nan6n+1 + p^(n + l)an + 1g n + (1 - q) (n + l)an + 1 (3 n + 1
 s 

AZi2aiBi = q2(l - <?)n2an3n + pqn(n 4- l)an3n+1 + -pqnfr-+ l)an + 1 3 n 

+ (1 - <?)(n + l)2an+1pn+1. 

Substitution into (15) and simplification complete the proof of (6). 

Equations (7-12) apply in various degenerate cases where the product of some 
two roots of the characteristic equation is 19 and there is a nongeometric term 
in the corresponding summation: 

• in equation (7) the roots are (a, 1)s a f 1, -1; 
® in equation (8) the roots are (a, -1), a £ 1, -1; 
• in equation (9) the roots are (1, -1); 
• in equation (.10) the roots are (a, a" 1); 
• in equation (11) the roots are (1,1); 
• in equation (12) the roots are (-1, -1). 
The results of Theorem 2 correct and complete the discussion of Hoggatt[l]„ 

Note that if q = 1 and p ̂  0 the following special cases are derived (see also 
Russell [5]): 

x<_i<_y 

E Risi = 
±i±y 

"Rn + *„ + 1" 
P 

2p 

n=y 

s 
n = x - 1 

Nothing in the derivations has precluded the possibility that q = 0. In this 
case the recurrences are first-order recurrences and the solutions are readily 
seen to reduce to the appropriate sums. 

The method of this paper can be extended to other sums involving products 
of terms from recurrence sequences. The "most pleasing" sums derived are those 
that can be expressed as linear combinations of terms "similar" to the summand, 
without multiplications by functions of n. Such sums, as in equations (1) and 
(6), have been called standard sums in [4], where they are more precisely de-
fined. It seems clear from the proofs of Theorems 1 and 2 that such standard 
sums do not exist if there is a set of values {a^|a^ is a root of the charac-
teristic equation of the ith recurrence sequence in the product being summed} 
such that Ilâ  = 1. When such a standard sum does exist9 it can be found di-
rectly , without knowing the roots of the characteristic equations, by the method 
described in [4]. The "key formulas" (4) and (13). were, in fact, first found 
in this way. 

The sums found are, of course, not unique. For instance, using the rela-
tion 

Rn+zSn + 2 - P2*n + lSn+i + PVRn+lSn + PVEnSn+l + l ^ n * 
equation (6) can also be written as follows: 
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Z Risi = 
x<.%<_y 

'pq2(R S ^ + R S ) + (1 - q)[R 0S AO + (1 - p2)R ± 15 ' 
r^ x n n+l n+1 ny K ^' L n+Z n+2 s r / n + l n + l 

(1 - q)(p + q - l)(p - q + 1) 

~-y 

n = x -1 

if q + 1 1 .0, p + <? - 1 ̂  0, p - q + 1 i 0. (16) 

In closing, we note that the expressions of this paper can be used to de-
rive some identities among recurrence terms. As an example consider YH^Si with 
Rl and Si identical sequences., i?0 = S0 = 0, i?L = S± = 1, p = 1, <? = 2 + e, and 
limits of summation 0 £ t <_ n. As e -̂  0, the sum approaches a well-defined 
value, and thus the right-hand side of (16) must also have a finite limit. Since 
the denominator goes to 0, so must the numerator. We conclude that the follow-
ing must be true: 

[ 8 i ? ^ + l - Rh' + 2jy = _1 = SRnRn + l " Rl+2 + 1 = 0 
or 

SRnRn + 1 = (Rn + 2 + l)(i?n + 2 - 1) 

if p = 1, q = 2, i?Q = 0, i?x = 1. 
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ITERATING THE PRODUCT OF SHIFTED DIGITS 

SAMUEL S. WAGSTAFF, JR. 
Northern Illinois University, DeKalh, IL 60115 

1. INTRODUCTION 

Let t be a fixed nonnegative integer. For positive integers n written in 
decimal as 

n =t,di ' 1Qi> 
i = 0 

with 0 < d . < 9 and d v > 0, we define 

ft(n) = .[] (* + <*,). 
i = 0 

Also define fQ (0) = 0. Erdos and Kiss [1] have asked about the behavior of the 
sequence of iterates n, ft(n)9 ft (ft (n)) 9. .. . They noted that ,/\(12Q) = 120. 
For t = 0, every such sequence eventually reaches a one-digit number. Sloane 


