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INTRODUCTION 

It is known that notions such as that of divisibility and greatest common di-
visor can be defined in any Euclidean ring. Such notions can be defined similarly 
in the corresponding ring of quotients, and there these notions, in general, become 
trivial. In this paper, we show that minor alterations to some of these defini-
tions lead to many interesting results concerning divisibility and greatest common 
divisors as well as primes and congruences. In each case these results generalize 
ones that hold in the original ring. 

The set of integers Z, the set of finite polynomials P[x] over a field, and 
the set of complex numbers Z[i], with integer real and imaginary parts, form Eu-
clidean rings. The results we obtain on rings of quotients then apply to rational 
numbers, quotients of polynomials, and complex numbers with real and imaginary 
parts which are rationals (or square roots of rationals, depending on the defini-
tion) . 

QUOTIENTS OF EUCLIDEAN RINGS 

Throughout this paper, R will denote a Euclidean ring with unity, as defined 
in [1]. The norm function associated with R will be denoted by g, and the set of 
divisors of zero in R by 0. If g, in addition to its two commonly accepted prop-
erties, also satisfies 

g(ab) = g(a)g(b) for all a9 b9 ab e R - {0}, 
then R will be called a Euclidean"*" ring. 

In R9 we use the standard definitions, as found in [1], for divides, greatest 
common divisor, mutually prime, unit, prime, congruence modulo c9 and .£• 

The ring of quotients of R9 as defined in [1], will be denoted here by Rr and 
the elements of Rr by (a, b) where b i d . The zero of Rr will be denoted by (0, 1) 
and the unity by (1, 1). 

If R is a Euclidean domain, so that 0 = {0}, then it is obvious that for 
(c9 d) £ (0, 1) we have 

(a, b) = (ad9 be) •• (c, d) + (0, 1) 

so that with norm function gf given by 

g'(as b) = g'd, 1) = <7(D> 

Rr is a Euclidean ring. 
If 0 is larger than {0} it may not be possible to define a gr on Rf which ex-

tends g. 
Since the division algorithm given above is a trivial one, we now give defini-

tions that will lead to a nontrivial division algorithm which applies to any ring 
of quotients of a Euclidean* ring. 

V<L{inXjtlovi /*' (a) (a, b) < (c9 d) if g(a)g(d) < g(c)g(b)9 
(b) (a, b) <_ (a9 d) if (a, b) < (c9 d) or (a, b) = (c9 d). 

The symbol < can easily be shown to be irreflexive, asymmetric, and transitive, 
while the symbol <_ is a partial ordering of Rr. 
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VdjlviiXlovi 2: If (a, ft) + (0, 1), we say that (a, ft) divides (c, d), that is, 
(a, ft)|(c, d), 

if there Is a q e R such that (c, d) = (a, l)(a, ft); in other words, if ad|fte. 

Note that the q in Definition 2 is unique if a £ 0 and that this definition is 
a generalization of division as defined in R. We can now prove 

ThtOKOm It If a, ft, c, d are elements of a Euclidean"1" ring R9 and (a, b)\(cs d) , 
then (a, ft) < (c, d) or ^(a)^(d) = g(b)g(c). 

Vtioofc If (a5 b)\(o9 d), then for some q e R9 

qad = be. 

When a ( a ) = 1, we have g(a)g(d) = g(b)g(c); o t h e r w i s e g(b)g(c) > g(a)g(d)9 so 
t h e theorem h o l d s . We can d e f i n e u n i t s and pr imes i n Rr j u s t a s we d id i n R. 

VtLJhiLtLovi 3: ( a , b) i s a u n i t i f fo r some (o9 d) e Rr
9 

( a , ft) • <<?, d) = ( 1 , 1 ) . 

V^LyiAjtion 4' (a9 b) i s a prime i f i t i s no t a u n i t and i f 

(a, ft) = (s, d) • (e, /) 

implies that (c, d) or (e, f) is a unit. 

If a i 0, we have (a, ft) • (fts a) = (15 1)9 so (a, ft) is a unit and hence not 
a prime. 

If a e 0 and (a, ft) • (c, d) = (19 1), then bdar = 09 where aar - 0. Now, as 
ft £ 09 daf = 0, and so d e 09 which is impossible. Hence we have: 

IkdOKOM 2: a £ 0 if and only if (a9 ft) is not a unit. 

Suppose a e 0 and a = a-ĵ tf̂ , with a19 a2 e 0S then 

(a, ft) = (a19 ft) * (a2a3, 1), 

where (a19 ft) and (a2<339 1) are not units, so (a, ft) is not prime. 
If a e 0 and a = a-La29 where ax e 0 is prime, a2 t 0, and 

(a, ft) = (o9 d) • (e, f), with a, ft, c, d, e, and / mutually prime, 

then a1a2df = oeb. When a1\o9 e\a2df9 so that e t 0 and (e, /) is a unit. 
Similarly, if a1\e9 (c9 d) is a unit. Hence in this case (a, ft) is prime. 
We have therefore proved 

Thzonm 3' If a e 09 then (as ft), where a and ft are mutually prime, is prime if 
and only if a = a1a29 where a± e 0 is prime in i? and a2 i 0. 

In addition to the above, we can prove the following version of the fundamen-
tal theorem of arithmetic, which connects primes in R with elements of Rr. 

Th&OKtm 4'< If a and ft are unequal elements of R9 then (a, ft) can be expressed as 

(u, 1) • (p19 1) • (p2S 1) ... (pk, 1) 8 (1, ax) • (1, q2) ... (1, qm)9 

where p±9 p2, ..., pk , a1, tf2, ..., tfOT are primes of i? and u is a unit of i?. This 
representation is unique except for the order of the factors. (In the case where 
a and ft are units, k - m = 0.) 

Pfioofa: Let (a9 ft) = (a19 b±) where a± and b1 are mutually prime. 

Any non-unit can be represented uniquely as a unit times a product of primes 
of R (see [2]). For a unit this holds as well, but the number of primes is zero. 
Thus 
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where p±9 p29 . . . , p 9 q19 q2, . . . 9 qm are primes and u± and u2 are units. 

Then 

(al9 fe1) = (wlS u2) • (px, 1) • (p2, 1) ... (pfe9 1) • (1, ax) • (1, q2) ... (1, ^ ) . 

If u2V = 1 and w = uxv, this becomes 

(a, 2?) = (u, 1) • (Pl, 1) • (p2, 1) ... (pfc, 1) • (1, q±) • (1, a2) ... (1, qm). 

We now state the new division algorithm. 

Thtotim 5: If i? is a Euclidean+ ring and (a, 2?), (c9 d) ^ (0, 1), then there is 
a q e R and (i% s) e R1 such that 

(a, 2?) = (<?, 1) • (c9 d) + (r, s), 

where (r, s) < (c9 d) or (p9 s) = (0, 1). 

Vnoofc Since be £ 0 and ad £ 09 there exist q9 r e R such that 

ad = qeb + v 

with P = 0 or g(r) < g(eb). 
Thus 

(a, b) = (qob + r, id) = ((7, 1) • (<?9 d) + (r, id). 

If r = 0, then (r, id) = (0, 1). If r ^ 0, then g(r)g(d) < g(e)g(bd). 

Letting s - bd9 we have 

(a, i) == (a, 1) • (c, d) + (r9 s) 

where (r, s) = (0, 1) or (p, s) < (e9 d). 

We will show later that this algorithm allows us to find a greatest common 
divisor of (a, i) and (e9 d) as defined below. 

Vz^i-ViLtiovi Si (e9 f) is a g.c.d. of (a9 i) and (c9 d) if 

(e. /)|(<z, b)9 (e9 f)\(c9 d) 9 and (£, j)|(a, b) 
and 

(£5 j)|(<3» d) implies (£, j)\(e9 f). 
In R9 if dx and d2 are both g.c.d.s of a and i, then g(d±) = g(d2). Similarly 

here, if (e19 f±) and (e29 f2) are g.c.d.s of (a, i) and (c, d)9 we have 

Gteifz) = ^(e2/i). 
The following theorem relates g.c.d.s in i? with g.c.d.s in it". 

ThdOKQJfn 6: If £ is a g.c.d. of a and c and j is a g.c.d. of i and d, then (ij9 bd) 
is a g.c.d. of (a9 i) and (c9 d). 

Vtiook1 We can assume without loss of generality that a and i and <2 and d are 
mutually prime. 

Let i be a g.c.d. of a and c? and j be a g.c.d. of i and d and a = ia± and d = 
jd-j^ 9 then 

(ij, id) • (axdX9 1) = (ad, id) = (a9 i), 
so 

(£j, bd) I(a, i). 
Similarly, 

(ij, bd) I O, d). 
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If (r, s)\(as b) and (r, s)\(c9 d), where again we assume that r and s are 
mutually prime, we have, for some t9 u e R9 

trb = sa and uvd = so. 

Thus r\a and r|e so v\i9 and 2? | s and d|s so bd\js. Therefore, 

rbd\ijs and (r, s)| (ij, 2?d) . 

Thus (ij9 2?d) is a g.c.d. of (a, 2?) and (c, d). 

CoHjottcUiyi If the only units of i? are 1 and -1, then any two g.c.d.s of two ele-
ments of Rf are equal or are additive inverses of each other, 

Several other standard theorems on g.c.d.s and divisibility hold in R'l 

TkdQfi&n 7: If (e, /) and (ef, /') are g.c.d.s of (a, b) and (<?, d) , where e t Q9 
then there is a unit u of R such that (e, /) = (u, 1) • (<gfs / ' ) . 

Vfwofc Assuming that e and / and e1 and /' are mutually prime, we have 

(e9 f)\(e'9 ff) and {e\ fr)\(e9 f). 

Thus, for some m9 n e R9 eff = me ff and eff = ne/f. Therefore, 

ee'ff'd - 77?n) = 0. 

Since e i Q9 ef i Q9 and w and n are units of i?, the theorem holds. 

ThQ.OH.em 8: If (e9 f) is a g.c.d. of (a, 2?) and (c, d) , there exist m9 n e R such 
that ™" 

(e, /) = (m, l)(a, 2?) + (n, l)(e, d). 

P/lOÔ » In the notation of the proof of Theorem 6, (ij, 2?d) is a g.c.d. of 
(aa b) and (c, d) , where i is a g.c.d. of a and c and j is a g.c.d. of 2? and d. 

Then ij will be a g.c.d. of ad and bo. Hence, by a property for R9 there are 
elements k and h of R such that 

ij = kad + Tzfrc. 
Thus 

(ij, bd) = (̂cad + fete, bd) = (Zc, 1) (a, b) + (ft, l)(c, d). 
If (es f) is any g.c.d. of (a, 2?) and (o9 d), then 

(e9 /) = (̂ 5 l)(ijs bd), for some t e R9 
= (/??, l)(a, 2?) + (n, l)(c, d), 

where m = tk and n = th. 
IkdOKOM 91 Any g.c.d. of (a, 2?) • (c, d) and (as W • (e, f) can be written as 
(a, 2?) times a g.c.d. of (o9 d) and (e9 f) . 

P/100̂ : Any g.c.d. of (a, 2?) • (c, d) and (a, 2?) 8 (e, /) will, by Theorems 6 
and 7, take the form (ukh9 bdbf), where fc is a g.c.d. of ao and ae, ft is a g.c.d. 
of bd and bf9 and u is a unit. 

Then k = ai and ft = bj9 where i is a g.c.d. of c and e, and J is a g.c.d. of 
/ and d. Thus 

(ukhs bdbf) = (uabij9 bdbf) = (a, 2?) • (wij, a7/), 

which is the form required by the theorem. 

JhdOKQm 10: If (a, 2?)= (a, 1).(<2, d) + (P, s), then any g.c.d. of (a, b) and (o, d) 
is a g.c.d. of (c, d) and (p, s) . 

VKOOJi Similar to that for J?. 
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Theorem 10 and part of the proof of Theorem 5 give us a technique for finding 
the g.c.d.s of two elements of Rf where R is Euclidean*. 

Given (a, b) and (c, d) in i?', we have, by the proof of Theorem 5, q9 r e R 
such that 

(a, b) = (q9 1) • (a, d) + (r9 bd), 
where g(r) < g(bc) or r = 0. 

Now if v £ 0, as cb ± 09 there are ̂  and 2^ in R such that 

cZ? = qxv + r±, 
where #(2^) < ^(P) or ^ = 0. 

Therefore, 
obd = q^d + î d 

and so 
(o9 d) - (ql9 1) • (r, M ) + (rl9 bd) 9 

where gir^ < g(v) or ̂  = 0. 
Again5 if r1 £ 09 we can obtain q29 r2 e R such that 

(r, bd) = (q2, 1)(PIS 6d) + (r2, ta), 

where ^(P 2) < ^(^I) o r r2 ~ 0, etc. 
As each g(r^ is a positive integer, this process terminates, and for some rk 

we have 
(rk_29 bd) = (qk9 l)(rk_19 bd) + (rk, bd) 

and 
(rk_19 bd) = (qk+1, l)(*k» bd). 

Then (rfc 9 fed) and (pfe_1} M ) have (rk, M ) as a g.c.d. and this, by repeated 
use of Theorem 9, can be seen to be a g.c.d. of (a, 2?) and (c9 d). 

If a, fc £ 0, the g.c.d. is9 by Theorem 7, unique except for a factor (u, 1), 
where u is a unit of i?. 

Using our unique representation of elements of Rr given by Theorem 4 and writ-
ing all factors of the form (p , 1) and (1, q) for both (a, b) and (c9 d), using 
zero exponents where necessary, it is clear that any g.c.d. of 

(M, i ) ( P l , Df*(p2 , i)*2 . . . (p. , D i c ( p e + 1 , i ) i e t i . . . ( P / , n ^ u v ^ ' U , ?2)^» 
. . . ( 1 , <7m)J"(l> <?m+1)J'"+1 . . . ( 1 . ? , ) '» 

and 
(v, l ) ( P l , l ) r ' (p 2 , l)r> . . . ( p e , D r e ( p e + 1 , D ' " 1 . . . (pf, 1)*'<1, ^ " ' d . < ? / 2 

... (1, ?m)s"(l, ? w + 1 ) s " - ••• (1, <7*>", 

where all powers are integers _> 0, is 

(w, l)(Pl, l)*1 (p2, D*2 ... (p/5 1)*'<1, ̂ " ' ( l , <72)"2 ... (1» qg)"e , 
where £k = min(i£, rfe)' and w^ = max(jk, s^) and w is an arbitrary unit of R. 

If a g.c.d. of (a, 2?) and (o9 d) is (1, 1), it follows that (a, 2?) = (e9 1) 
and (e, d) = (/, 1) for some e, f £ R which are mutually prime. 

The following definition extends the notion of mutually prime elements of R to 
i?\ 

V&&ylvuJxon 6* If a and b as well as c and d are mutually prime and a and & are 
not both zero, then (a, b) and (<?, d) are mutually prime if (1, bd) is a g.c.d. of 
(a, £>) and (c, d). 

Tfoe ̂pecxal c&6e whoAz b = d = 1 conjonm^ to tht ddjuuXLon joK R 
The property: 

If x\yz and a: and y are. mutually prime, then x\z9 
which holds in R for y9 z t 0, fails in Rr. 
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For example, if R = Z, 314 * -r in Rf (= Q) and 3 and 4 are mutually prime, but 

The following seems to be the most general replacement for the above that we 
can prove. 

TkdQtim 111 if (a, b)\{c9 d) • (e, /) , where (a, 2?) and {o9 d) as well as / and o 
axe. mutually prime, then (a, b) \ (e, f). 

VtlOOfa Assume that a and b, o and d, f and o and e and / are mutually prime 
and that (a, fc) | (a, d) • (e, / ) . Then ad/1tee. 

Now, if (a, 2?) and {o9 d) are mutually prime, so are a and a. Therefore, a\e 
and /|fc, and hence af\be. 

We define congruence in Rf as follows. 

VzilviiXlon 7: (a, 2?) E {C9 d) mod (e, / ) , if (e, f)\{(a, b) - {o9 d)}. 

Alternatively, (a, 2?) = {e9 d) mod (e, f), if 2?de|(ad.f - 2xrf). Congruence 
mod (e, /) is clearly an equivalence relation over Rr. 

The equivalence class of {o9 d), mod {e9 f), will consist of all elements of 
the form {of + dke9 df)9 it will include elements of the form {h9 1) only if d\f. 

From our division algorithm, 

(a, fc) = (a, l)(e, /) + (r, s), 

it follows that (a, 2?) and the remainder {r9 s) upon division by {e9 f) are in the 
same equivalence class, mod {e9 f). Also, all the elements in the equivalence 
class of (a, b) mod {e9 f)9 will have common g.c.d.s with (a, 2?) and (e, f). 

Each equivalence class, mod {e9 f)9 can therefore be uniquely determined by a 
particular divisor (it?, t) of (e, f); the elements of the class will all be of the 
form {kw9 t). 

If all remainders (r, s) obtained upon division by (e, f) in a particular Rr 

are unique, the set of all such remainders can be said to form a set of least resi-
dues mod {e9 f). If when such remainders are not unique they always form a "posi-
tive" and "negative" pair, the positive remainders can be said to be least posi-
tive residues mod (e, f), 

The usual elementary theorems about residues can be summed up as follows. 

ThdOKom 72: if (a, b) = (e, d) mod {e, f)9 (a', 2>') = (<?', d') mod {e9 f)9 ... 
and cj) is any polynomial in several variables with integer coefficients, then 

• ((a, b), (a', 6 f ) , ...) = 4>(fo, d), (<?', d')9 ...) mod (e, / ) . 
The following cancellation theorem: 

If d is a g.c.d. of e and c, e t Q9 and ae = 2?e mod a, then a = b mod ̂ p 

which holds in i?, fails in i?f. For example, in Zf, the set of rationals 

2j • 4 E 2| • } mod 3y, 
but 

4 2 y mod 11. 
We can prove the following more restricted generalization of the above theorem 

for R. 
ThdOKOm 13: If a and b9 a and d, e and / and k and 7z are mutually prime pairs of 
elements of R9 k i Q9 m is a g.c.d of k and e9 n a g.c.d. of / and /z, e = e ^ , 
fc = ̂ m , and / = /xn, where k± is mutually prime to b and d, and if 

{k9 h) • (a, fc) E (fe, fc) • {c9 d) mod (e, / ) , 
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then 
(a, b) = (o9 d) mod (e±9 / 1 ) . 

PJWOj: If the conditions of the theorem hold, then 

bhde](ad - bc)kf. 

Letting h = hxn9 we have m9 n t 9 and bh1de1\ (ad - bo)k1f1. Then, as e±bd and k1 
are mutually prime and k1 t 0, 

M^x | (aJ - ba)f1 
and so 

(a, b) = (c, d) mod (ex, j^). 

Under the conditions of the theorem, we can also obtain, from the proof: 

(a, b) = (o9 d) mod (eh9 kf) 
and 

(a9 b) = (o9 d) mod (e1h19 k^^. 

We now consider the solution of the linear congruence 

(a, b) « (x9 y) = (c, d) mod (e, f). 

Clearly if a £ ®9 (x9 y) = (Z?c, ad) + (teb9 fa) is a solution for every t e R. It 
is therefore of more interest to find solutions with y = 1. 

Conditions for the existence of such solutions are given in the next theorem. 

Tk&Ofiem 14«* (i) If i is a g.c.d. of a and e and j is a g.c.d. of b and / and 

(1) (a, fc) • (x9 1) = (e, d) mod (e9 f)9 

has a solution, then (ij, 2?/) | (a9 d) . 

(ii) If b = b±j and e = ex£, the solution is unique mod b1e1. 

?KO0£} (i) If (1) has a solution, (a, &), (o9 d) and (e, / ) , by our earlier 
work on the division algorithm, clearly have a common g.c.d. Thus, if i and j are 
defined as in the theorem, (ij, 2?/) | (e, d). 

(ii) If we have a solution to (1), we also have a solution to 

(2) dfax = bcf mod bed. 

Let a = a1i, e = ^ i , 2? = b:ij9 and / = fxj. Assume that a and b9 e and / and 
o and d are mutually prime. Since (2) has a solution, di\bxof so that i|c and 
d\bj. 

Let c = o^i and /cd = ^ x / , t hen (2) becomes 
f^i-^x = kox mod-Z?!^!. 

If also f1a1xr = kcx mod Z^^, we have 

f1a1(x - xT) = 0 mod &xei-

Since / - j ^ and b1e1 are mutually prime, 

x = x' mod b1e1. 

Thus the solution x is unique mod b1e1. 

Co/iotta/iy- If (k9 h) is a g.c.d. of (a, b) and (e, f)9 then 

(a, 2?) • (x9 1) = (a, d) mod (e9 f)9 

if and only if (k, h)\(o9 d). 

VtiOOJ: By the fact that (fc, h)\(ij9 bf) and (ij, &/) | (fc» /z) in the notation 
of the above proof. 
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In the case where the ring i? is Z, the set of integers, we can determine the 

total number of different solutions mod (e, f) 9 or 4. 

This number of solutions will be the smallest positive integer n such that 

(nb1e1, 1) E 0 mod (e, f), 
i.e., such that e\nb.e^f. 

Now, as we can assume that e and / and a and b are mutually prime, this reduces 
to i\n, so the smallest n is t. 

Thus in the ring of integers, the number of noncongruent solutions mod (e, f) 
of (1) is i. 

Take, as an example, 
5 — 5 5 

15jcrC = -g- mod 20 32". 

Clearly, g.c.d. (l5-̂ -5 20^-j = yfg- J-, and we can obtain x = -89 as a solution to 

4(15.39 + 5)x = 26.5 mod (60.52 + 15). 

Now b± comes to 3 and e1 to 209, so the simplest noncongruent positive integer 
_5_ 
52 3 
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A RECURSION-TYPE FORMULA FOR SOME PARTITIONS 
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If -pin) denotes the number of unrestricted partitions of n, the following re-
currence formula, known as Euler's identity, permits the computation of p(n) if 
p(k) is already known for k < n. 

(1) p(n) = p(n- l)+p(n- 2) -p(n- 5) -p(n- 7) + p(n- 12) + p(n- 15)—++ ••• 

£(-l)' + 1p(n -|(3j 2 + j)), 

where the sum extends over all integers j, except j - 0, for which the arguments 
of the partition function are nonnegative, 

Hickerson[l] gave a recursion-type formula for q(n), the number of partitions 
of n into distinct parts, in terms of p(k) for k <_n9 as follows, 

(2) q{n) = ]T (-DJ'p(n - (3j2 + j)), 
j.-00 

where the sum extends over all integersj for which the arguments of the partition 
function are nonnegative. 

Alder and Muwafi [2] gave a recursion-type formula for pr(0, k - r, 27c + a; n) , 
the number of partitions of n into parts t 0, ±(k - r) mod 2k + a9 where 0 £ r £ 
k - 1. 


