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A comparison of (xn + yjl) (3 + 2/2) and \\ Z\(Xn) shows that all solutions 
of t2 - 2(2ft)2 = 1 are obtained by XA J / ^ n' 

V2 3/\22>J \2bn+1) 

and hence all solutions of a^a = £>2 are obtained from an = - ~ , bn = —j~» 

Note that tn is odd for all n so an is an integer. 
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1. INTRODUCTION 

The central factorials have been introduced and studied by Stephensen; prop-
erties and applications of these factorials have been discussed among others and 
by Jordan [3], Riordan [5], and recently by Roman and Rota [4], 

For positive integer m9 

x[m>b] = x(x + ~mb - b)(x + ±mb - 2b\ -.. (x - ~m£> + b\ 

defines the generalized central factorial of degree m and increment b. This defi-
nition can be extended to any integer m as follows: 

x['m'b] = x2/xlm+2,b] , m a positive integer. 

The usual central factorial (b = 1) will be denoted by x[m^. Note that these fac-
torials are called "Stephensen polynomials" by some authors. 

Carlitz and Riordan [1] and Riordan [5, p. 213] studied the connection constants 
of the sequences x^m^ and xn

9 that is, the"central factorial numbers t{m9 ri) and 
T(m3 ri): 

m m 

n = 0 ^=0 

these numbers also appeared in the paper of Comtet [2], In this paper we discuss 
some properties of the connection constants of the sequences x^m'd] and x^-n'h^9 h ^ 
g9 of generalized central factorials, that is, the numbers K(jn9 n, s): 

m 

x[m'g] = Jl gmKnK(m9 n9 s)x[n> h\ s = h/g. 
rc = 0 

2. EXPANSIONS OF CENTRAL FACTORIALS 

The central difference operator with increment a, denoted by Sa , is defined by 

&af(x) = f(x + a/2) - f(x - a/2) 
Note that 

E* - E^ =^"iAas (2.1) 
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where Ea and Aa denote the displacement and difference operators with increment a9 
respectively. Therefore, 

&a-t(-l)k(l)E^-k (2.2) 

When the increment a = 1, we write 61 = 6, E1 = E9 and Ax = A. 
The central factorial of degree m and increment b, denoted by x^m'b\ is defined 

by 

x 
Note t h a t 

[*»&] = x(x + i/zfe - b)(x + 4??2? - 22?) • • • (x - ~mb + 2?). 

:(*+^m& - i ) ^ , * , (2.3) 
where 

(yh,b = yty - b)(y - 2b) ••• (y - mb + b) 
is the falling factorial of degree m and increment b. 

It is not difficult to verify that 

J.m-2, b] 

Using the relation 

and, by (2.3), we get 

x[m,b] — 

(y 

x2 - {hn.- l\2b2\x{n 

> „ 1 
>-*<*> (y + mb)mjb> 

x2 

.̂fm + 2 , 6 ] 

(2.4) 

(2.5) 

(2.6) 

When the increment b = 1, we write 

xlm'1]= x^r, (z/)mjl = (y)m. 
Note also that 

(&x)[m] = bmx^m-h\ h = lib. (2.7) 
From formula (2.8) (see Riordan [5, p. 147]), 

-• -1 * t ~c +»6-"i >• = | ,rrs( a v y - • -«-«>«-. «•» 
with a = bx9 3 = 1/2, u - E9 v == (S7 - 1)2? ~* = 6, we get the symbolic formula 

Since [£,fca(8s)[ral ] s . 0 = (ax)[m] , s = alb, we obtain 

(ox)1"" - L ^ W " ' 1 ! • (te)["]. 
n » o Ln • J a? - 0 

Denoting the number in brackets by 

Z(m, n, s) = r^r6"(Sar)[m]l , (2.9) 

we have 
m 

{ax)[m] = £#(772, n, s)(bx)[n] , s = a/2?. (2.10) 

n = 0 

Using (2.7), (2.10) may be rewritten in the form 
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xim39] = E g"h'nK(m9 n9 s)x^^\ s = h/g. 
Note also that 

K(m9 n9 s) 
1 \n~[mtb] 

.nib 
-&aXl , s = a/b. 

(2.11) 

(2.12) 

From the definition (2.9), we may deduce an explicit expression for the num-
bers K(m9 n9 s). Indeed, from the symbolic formula (2.2) with a = 19 and since 

we get 

(2.13) 

A recurrence relation for the numbers K(jn, n, s) , useful for tabulation pur-
poses, may be obtained from (2.10) and (2.4) as follows: 

1 + 2 

Hence 

... T t / \ m 
(.sk)[m+z] = ^ I ( ™ + 2, n, s)x[n] = (s2x2 - V ) £jf(m, n, s)x^ 

m r i i 
- £ x ( m , n. 8) a2a:[" + 2, + i(8zn2 - m2)x^U. 

n=0 L ^ J 

Jf(m + 2, n, s) = 7-(s2n2 - m2)K(m, n, s) + s2K(rn, n - 2, s). (2.14) 

The initial conditions are 
Z(09 09 s) = 1, X(Q, n9 s) = 09 n > 09 K(m9 09 s) = 09 m > 0. 

Moreover, 
K(2ms In + 1, s) = 0, Z(2w + 1, 2n, s) = 0. 

From the recurrence relation and the initial conditions, it follows thatt 
If s is an integer,. the numbers 

s'2nK(2rn9 2n9 s) and ^m'n8'2n-1K(2m + 1, In + 1, s) 

are positive integers and9 moreover, 

If s is a negative integer, the numbers 
K(2m9 2ns s) = 0, m < n, m > n\s\9 

K(2m + 1 , 2n + 1, s) = 0, m < n, 2m + 1 > (2n + l)|s|. 

Other properties of these numbers will be discussed in the next section. 
We now proceed to determine the coefficients A{n9 m9 s) in the expansion 

xi~m] =Y1 A(n> m> s)(sx)[-nl a 

Since x [-m + 2] [x2 - \rny x^"mK we get 

n-n- 2 

]T 4(n, ̂ - 2 , s)(sx)["n] = L 2 - ~-m2) Y*A(n9 m9 s)(sx)['n] 

\ / n = m 

= f>(n, m, s)rs-2(sa;)t-n+2J + -ks" V - m2) (sx)1""']. 
« = m L J 
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Hence 

A(n + 2, m, s) = -r(s m - n )A(n9 m9 s) + s A(n9 m - 2, s) 
with 

A(09 0, s) = 1, A(09 m9 s) = 0, > 0. 
Comparing this recurrence with (2.14), we conclude that 

xi~m] = JlK(n> ™9 s)(sx)^n1 , (2.15) 

which may be written in the form 

(bx)["m] = J^K(n, m9 s)(ox)["n] (2.16) 
n = m 

or 
^["^3 = ]C gnh~mR(<n> m> s)x[-n>h\ s = hlg. (2.17) 

« = m 

3. SOME PROPERTIES OF THE CENTRAL FACTORIAL NUMBERS 

Some other properties of the numbers Kim* n9 s ) 9 defined by (2.9) or, equiva-
lently, by (2.12), will be discussed in this section. 

From (2.10) we may easily get the relation 

m 

Y,K(m, k, a/b)K(k, n9 bid) = Smn9 (3.1) 
k = n 

where 6 m n denotes the Kronecker delta. This relation implies the pairs of inverse 
relation 

m m 

am = 22 K(m9 n9 alb)bn9 bm = ^K(m» n9 b/a)an9 
n - 0 n = 0 

°n = ^K(m9 n9 alb)dm9 dn = ^ K(m9 n9 b/a)cm. 
m = n m = n 

For the central factorial numbers 

t(m9 n) ~rDnxA and T(m9 n) = [^V"! 
n\ J* = o Ln! J; 

we have (see Riordan [ 5 , p . 2 1 3 ] ) 

m_ 

rc = 0 

xm = ]T !Ffe9 n)^t n l . (3.3) 
rc = 0 

Expanding (sa:)^^ into powers of x by means of (3.2) and then the powers into cen-
tral factorials by means of (3.3), we obtain 

m m k 

(sx)[m] = J2skt(m9 k)xk = £ Y, skt(m> k)T(k, n)x^1 
k = 0 k=0 n=0 

or 
m m 

(sx)[m] = Y, lLskt(m> ^ ( k , n)x^nK 
n - 0 fc = n 
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which, in virtue of (2.10) with b = 1, a = s, gives 

K(m9 n9 s) = ]T skt(m9 k)T(k9 ft); 
k = n 

similarly, it can be shown that 
m 

t(m9 n) = s~nY^ K(m9 k9 s)t(k9 n) 
i k = n 

and 
m 

T{m, n) = s"m£ T(jn, k)K(k, n, s). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Since lim s'm (sx)[m] = xm, we get, from (2.9), 
s->- + » 

lim s-mK(m9 n9 s) =W6nxm"] = T(m9 n). 
s-^±oo \_n\ Jx = o 

From (2.12) with b = 1, a - s9 and noting that lim s~1Ss = D9 we deduce 

(3.8) 

Turning to the generating function, we find, on using (2.13) and (2.8), with 

a = -zsn - sk9 3 = -y5 v = y9 (u - l)u~* = y9 

s-+- 0 

lim s~nK(m9 n9 s) = M^Z)Vl = t(m9 ft). 

that 

m - 0 

fc = 0 

oo —sn - s/c / -Tzsn - sk + -an - l\ 

i + E^-— 2 2 k m - 1 

- V ( M
S / 2 - w"s/2) , (w - l)w 

ft! 

-1/2 

and 

Therefore, 

Putting u - ew and s = r to avoid mistakes in the hyperbolic formulas, we get 

Gn(yi r) =^-[2 sinh (|w)J 

y = 2 sinh (-~-w J. 

0„<J/; r) = ̂ j-[2 sinhjr sinh"1 (|z/)}J. 

= ̂ [ 2 sinh [r logQ-y + | / y 2 + 4)]]". (3.9) 

The corresponding generating functions for the Carlitz-Riordan central fac-
torial numbers may be obtained as 

±tim, nyQ = ±\l s i n h - ( ^ ) ] " 

t n r n , n ) | f = ^ [ 2 s i a h ( i y ) ] " . 

Using formulas (3.10), (3.11), and (3.9), and since 

6a" = [2 sinh (^ao)]" , anDn = [2 sinh"1 ( | 6 a ) ] " , C = [2 sinh [r sinh"1 (|<5j)}J, 

(3.10) 

(3.11) 
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we get 

m*. ' ' - *-< ml 
m=0 m=0 

Finally, let 
ml 

m = 0 

Qm(.z; s) = £ (sx)[m> 
a;* 0 

and put m 0 
n ( \ 2s + 1 V* w>n>s (g + n)! 
>"U; S) ~ 2 £<02n + 1 (* - w)! 

Then 
(sartl2fl|J - To X(x + n ~ 1 ) ! c T f l ^ m ] 

n-o ^ - n ; . ^ 
and by ( 2 . 1 0 ) , 

e w > n , s = *(2m, 2n, e). 
A similar expression may be obtained for Q {z\ s) . 
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Let A be t h e n X n m a t r i x w i th e lements def ined by 

dtf = - 1 i f i = J - 1; 1 + y i f i = j ; -y i f £ = J + 2 ; 
and 0 otherwise. If n _> 3 and y is a positive number, then ̂ 4 is a special case of 
a matrix that was shown in [1] to be useful in the design of two-up, one-down ideal 
cascades for uranium enrichment. The purpose of this paper is to derive certain 
properties of the determinant Dn of A and to point out its relation to the Fibo-
nacci numbers. 

Expansion of the determinant of A according to its first column leads to the 
recurrence relation 

(1) D1 = 1 + y, D2 = (1 - y ) 2 , and Dn = (1 + y)0n_i - V^„.3 for n >_ 3. 
For convenience, set DQ = 1. 

By using standard techniques for generating functions, it can be shown that 
the generating function D(x) for {Dn} (with positive radius of convergence) is 

(2) D(x) - [1 - (1 + \i)x + MX3]'1 = J2 J2(-Dd(^)^(l +y)*-V 


