A comparison of $\left(x_{n}+y_{n} \sqrt{2}\right)(3+2 \sqrt{2})$ and $\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)\binom{x_{n}}{y_{n}}$ shows that all solutions
of $t^{2}-2(2 b)^{2}=1$ are obtained by

$$
\left(\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right)\binom{t_{n}}{2 b_{n}}=\binom{t_{n+1}}{2 b_{n+1}}
$$

and hence all solutions of $\frac{\alpha(\alpha+1)}{2}=b^{2}$ are obtained from $a_{n}=\frac{t_{n}-1}{2}, b_{n}=\frac{2 b_{n}}{2}$. Note that t_{n} is odd for all n so a_{n} is an integer.

CENTRAL FACTORIAL NUMBERS AND RELATED EXPANSIONS
Ch. A. CHARALAMBIDES
University. of Athens, Athens, Greece

1. INTRODUCTION

The central factorials have been introduced and studied by Stephensen; properties and applications of these factorials have been discussed among others and by Jordan [3], Riordan [5], and recently by Roman and Rota [4].

For positive integer m,

$$
x^{[m, b]}=x\left(x+\frac{1}{2} m b-b\right)\left(x+\frac{1}{2} m b-2 b\right) \cdots\left(x-\frac{1}{2} m b+b\right)
$$

defines the generalized central factorial of degree m and increment b. This definition can be extended to any integer m as follows:

$$
\begin{aligned}
x^{[0, b]} & =1 \\
x^{[-m, b]} & =x^{2} / x^{[m+2, b]}, m \text { a positive integer } .
\end{aligned}
$$

The usual central factorial $(b=1)$ will be denoted by $x^{[m]}$. Note that these factorials are called "Stephensen polynomials" by some authors.

Carlitz and Riordan [1] and Riordan [5, p. 213] studied the connection constants of the sequences $x^{[m]}$ and x^{n}, that is, the central factorial numbers $t(m, n)$ and $T(m, n)$:

$$
x^{[m]}=\sum_{n=0}^{m} t(m, n) x^{n}, x^{m}=\sum_{n=0}^{m} T(m, n) x^{[n]} ;
$$

these numbers also appeared in the paper of Comtet [2]. In this paper we discuss some properties of the connection constants of the sequences $x^{[m, g]}$ and $x^{[n, h], ~} h \neq$ g, of generalized central factorials, that is, the numbers $K(m, n, s)$:

$$
x^{[m, g]}=\sum_{n=0}^{m} g^{m} h^{-n} K(m, n, s) x^{[n, h]}, s=h / g .
$$

2. EXPANSIONS OF CENTRAL FACTORIALS

The central difference operator with increment α, denoted by δ_{a}, is defined by

$$
\delta_{a} f(x)=f(x+a / 2)-f(x-a / 2)
$$

Note that

$$
\begin{equation*}
\delta_{a}=E_{a}^{\frac{1}{2}}-E_{a}^{-\frac{1}{2}}=E_{a}^{-\frac{1}{2}} \Delta_{a} \tag{2.1}
\end{equation*}
$$

where E_{a} and Δ_{a} denote the displacement and difference operators with increment a, respectively. Therefore,

$$
\begin{equation*}
\delta_{a}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} E^{n / 2-k} \tag{2.2}
\end{equation*}
$$

When the increment $a=1$, we write $\delta_{1} \equiv \delta, E_{1} \equiv E$, and $\Delta_{1} \equiv \Delta$.
The central factorial of degree m and increment b, denoted by $x^{[m, b]}$, is defined by

Note that

$$
x^{[m, b]}=x\left(x+\frac{1}{2} m b-b\right)\left(x+\frac{1}{2} m b-2 b\right) \cdots\left(x-\frac{1}{2} m b+b\right) .
$$

where

$$
\begin{equation*}
x^{[m, b]}=x\left(x+\frac{1}{2} m b-b\right)_{m-1, b}, \tag{2.3}
\end{equation*}
$$

is the falling factorial of degree m and increment b.
It is not difficult to verify that

Using the relation

$$
\begin{equation*}
x^{[m, b]}=\left[x^{2}-\left(\frac{1}{2} m-1\right)^{2} b^{2}\right] x^{[m-2, b]} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
(y)_{-m, b}=\frac{1}{(y+m b)_{m, b}}, \tag{2.5}
\end{equation*}
$$

and, by (2.3), we get

$$
\begin{equation*}
x^{[-m, b]}=\frac{x^{2}}{x^{[m+2, b]}} \tag{2.6}
\end{equation*}
$$

When the increment $b=1$, we write

Note also that

$$
\begin{align*}
& x^{[m, 1]} \equiv x^{[m]},(y)_{m, 1} \equiv(y)_{m} \\
& (b x)^{[m]}=b^{m} x^{[m, h]}, \quad h=1 / b \tag{2.7}
\end{align*}
$$

From formula (2.8) (see Riordan [5, p. 147]),

$$
\begin{equation*}
u^{\alpha}=1+\sum_{n=1}^{\infty} \frac{\alpha}{n}\binom{\alpha+\beta n-1}{n-1} v^{n}=\sum_{n=0}^{\infty} \frac{\alpha}{\alpha+\beta n}\binom{\alpha+\beta n}{n} v^{n}, v=(1-u) u^{-\beta}, \tag{2.8}
\end{equation*}
$$

with $\alpha=b x, \beta=1 / 2, u=E, v=(E-1) E^{-\frac{1}{2}}=\delta$, we get the symbolic formula

$$
E^{b x}=\sum_{n=0}^{\infty}(b x)^{[n]} \frac{1}{n!} \delta^{n}
$$

Since $\left[E^{b x}(s z)^{[m]}\right]_{z=0}=(a x)^{[m]}, s=a / b$, we obtain

$$
(a x)^{[m]}=\sum_{n=0}^{m}\left[\frac{1}{n!} \delta^{n}(s x)^{[m]}\right]_{x=0} \cdot(b x)^{[n]}
$$

Denoting the number in brackets by

$$
\begin{equation*}
K(m, n, s)=\left[\frac{1}{n!} \delta^{n}(s x)^{[m]}\right]_{x=0} \tag{2.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
(a x)^{[m]}=\sum_{n=0}^{m} K(m, n, s)(b x)^{[n]}, s=a / b \tag{2.10}
\end{equation*}
$$

Using (2.7), (2.10) may be rewritten in the form

$$
\begin{equation*}
x^{[m, g]}=\sum_{n=0}^{m} g^{m} h^{-n} K(m, n, s) x^{[n, h]}, s=h / g . \tag{2.11}
\end{equation*}
$$

Note also that

$$
\begin{equation*}
K(m, n, s)=\left[\frac{1}{n!b^{m}} \delta_{a}^{n} x^{[m, b]}\right]_{x=0}, s=a / b . \tag{2.12}
\end{equation*}
$$

From the definition (2.9), we may deduce an explicit expression for the numbers $K(m, n, s)$. Indeed, from the symbolic formula (2.2) with $a=1$, and since

$$
\left[E^{n / 2-k}(s x)^{[m]}\right]_{x=0}=\left(s\left[\frac{1}{2} n-k\right]\right)^{[m]}
$$

we get

$$
\begin{align*}
K(m, n, s) & =\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(s\left[\frac{1}{2} n-k\right]\right)^{[m]} \\
& =\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left(\frac{1}{2} s n-s k\right)\left(\frac{1}{2} s n+\frac{1}{2} m-s k-1\right)_{m-1} \tag{2.13}
\end{align*}
$$

A recurrence relation for the numbers $K(m, n, s)$, useful for tabulation purposes, may be obtained from (2.10) and (2.4) as follows:

Hence

$$
\begin{aligned}
(s k)^{[m+2]} & =\sum_{n=0}^{m+2} K(m+2, n, s) x^{[n]}=\left(s^{2} x^{2}-\frac{1}{4} m^{2}\right) \sum_{n=0}^{m} K(m, n, s) x^{[n]} \\
& =\sum_{n=0}^{m} K(m, n, s)\left[s^{2} x^{[n+2]}+\frac{1}{4}\left(s^{2} n^{2}-m^{2}\right) x^{[n]}\right] .
\end{aligned}
$$

$$
\begin{equation*}
K(m+2, n, s)=\frac{1}{4}\left(s^{2} n^{2}-m^{2}\right) K(m, n, s)+s^{2} K(m, n-2, s) . \tag{2.14}
\end{equation*}
$$

The initial conditions are

$$
K(0,0, s)=1, K(0, n, s)=0, n>0, K(m, 0, s)=0, m>0
$$

Moreover,

$$
K(2 m, 2 n+1, s)=0, K(2 m+1,2 n, s)=0 .
$$

From the recurrence relation and the initial conditions, it follows that:

$$
\begin{aligned}
& \text { If } s \text { is an integer, the numbers } \\
& s^{-2 n} K(2 m, 2 n, s) \text { and } 4^{m-n} s^{-2 n-1} K(2 m+1,2 n+1, s)
\end{aligned}
$$

are positive integers and, moreover,
If s is a negative integer, the numbers

$$
K(2 m, 2 n, s)=0, m<n, m>n|s|
$$

$$
K(2 m+1,2 n+1, s)=0, m<n, 2 m+1>(2 n+1)|s|
$$

Other properties of these numbers will be discussed in the next section.
We now proceed to determine the coefficients $A(n, m, s)$ in the expansion

$$
x^{[-m]}=\sum_{n=m}^{\infty} A(n, m, s)(s x)^{[-n]}
$$

Since $x^{[-m+2]}=\left(x^{2}-\frac{1}{4} m^{2}\right) x^{[-m]}$, we get

$$
\begin{aligned}
\sum_{n=n-2}^{\infty} A(n, m-2, s)(s x)^{[-n]} & =\left(x^{2}-\frac{1}{4} m^{2}\right) \sum_{n=m}^{\infty} A(n, m, s)(s x)^{[-n]} \\
& =\sum_{n=m}^{\infty} A(n, m, s)\left[s^{-2}(s x)^{[-n+2]}+\frac{1}{4}\left(s^{-2} n^{2}-m^{2}\right)(s x)^{[-n]}\right]
\end{aligned}
$$

Hence

$$
A(n+2, m, s)=\frac{1}{4}\left(s^{2} m^{2}-n^{2}\right) A(n, m, s)+s^{2} A(n, m-2, s)
$$

$$
A(0,0, s)=1, A(0, m, s)=0, \quad>0
$$

Comparing this recurrence with (2.14), we conclude that

$$
\begin{equation*}
x^{[-m]}=\sum_{n=m}^{\infty} K(n, m, s)(s x)^{[-n]}, \tag{2.15}
\end{equation*}
$$

which may be written in the form
or

$$
\begin{equation*}
(b x)^{[-m]}=\sum_{n=m}^{\infty} K(n, m, s)(\alpha x)^{[-n]} \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
x^{[-m, g]}=\sum_{n=m}^{\infty} g^{n} h^{-m} K(n, m, s) x^{[-n, h]}, s=h / g \tag{2.17}
\end{equation*}
$$

3. SOME PROPERTIES OF THE CENTRAL FACTORIAL NUMBERS

Some other properties of the numbers $K(m, n, s)$, defined by (2.9) or, equivalently, by (2.12), will be discussed in this section.

From (2.10) we may easily get the relation

$$
\begin{equation*}
\sum_{k=n}^{m} K(m, k, a / b) K(k, n, b / a)=\delta_{m n} \tag{3.1}
\end{equation*}
$$

where $\delta_{m n}$ denotes the Kronecker delta. This relation implies the pairs of inverse relation

$$
\begin{array}{ll}
a_{m}=\sum_{n=0}^{m} K(m, n, a / b) b_{n}, & b_{m}=\sum_{n=0}^{m} K(m, n, b / a) a_{n} \\
c_{n}=\sum_{m=n}^{\infty} K(m, n, \alpha / b) d_{m}, & d_{n}=\sum_{m=n}^{\infty} K(m, n, b / a) c_{m}
\end{array}
$$

For the central factorial numbers

$$
t(m, n)=\left[\frac{1}{n!} D^{n} x^{m}\right]_{x=0} \quad \text { and } \quad T(m, n)=\left[\frac{1}{n!} \delta^{n} x^{m}\right]_{x=0}
$$

we have (see Riordan [5, p. 213])

$$
\begin{align*}
x^{[m]} & =\sum_{n=0}^{m} t(m, n) x^{n} \tag{3.2}\\
x^{m} & =\sum_{n=0}^{m} T(m, n) x^{[n]} \tag{3.3}
\end{align*}
$$

Expanding $(s x)^{[m]}$ into powers of x by means of (3.2) and then the powers into central factorials by means of (3.3), we obtain
or

$$
(s x)^{[m]}=\sum_{k=0}^{m} s^{k} t(m, k) x^{k}=\sum_{k=0}^{m} \sum_{n=0}^{k} s^{k} t(m, k) T(k, n) x^{[n]}
$$

$$
(s x)^{[m]}=\sum_{n=0}^{m} \sum_{k=n}^{m} s^{k} t(m, k) T(k, n) x^{[n]}
$$

which, in virtue of (2.10) with $b=1, a=s$, gives
similarly, it can be shown that

$$
\begin{align*}
& K(m, n, s)=\sum_{k=n}^{m} s^{k} t(m, k) T(k, n) ; \tag{3.4}\\
& \text { own that }
\end{align*}
$$

and

$$
\begin{equation*}
t(m, n)=s^{-n} \sum_{k=n}^{m} K(m, k, s) t(k, n) \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
T(m, n)=s^{-m} \sum_{k=n}^{m} T(m, k) K(k, n, s) . \tag{3.6}
\end{equation*}
$$

Since $\lim _{s \rightarrow \pm \infty} s^{-m}(s x)^{[m]}=x^{m}$, we get, from (2.9),

$$
\begin{equation*}
\lim _{s \rightarrow \pm \infty} s^{-m} K(m, n, s)=\left[\frac{1}{n!} \delta^{n} x^{m}\right]_{x=0}=T(m, n) . \tag{3.7}
\end{equation*}
$$

From (2.12) with $b=1, a=s$, and noting that $\lim _{s \rightarrow 0} s^{-1} \delta_{s}=D$, we deduce

$$
\begin{equation*}
\lim _{s \rightarrow 0} s^{-n} K(m, n, s)=\left[\frac{1}{n!} D^{n} x^{m}\right]_{x=0}^{s \rightarrow 0}=t(m, n) . \tag{3.8}
\end{equation*}
$$

Turning to the generating function, we find, on using (2.13) and (2.8), with

$$
\alpha=\frac{1}{2} s n-s k, \beta=\frac{1}{2}, v=y,(u-1) u^{-\frac{1}{2}}=y,
$$

that

$$
\begin{aligned}
g_{n}(y ; s) & =\sum_{m=0}^{\infty} K(m, n, s) \frac{y^{m}}{m!} \\
& =\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\left[\begin{array}{c}
\left.1+\sum_{m=1}^{\infty} \frac{\frac{1}{2} s n-s k}{m}\binom{\frac{1}{2} s n-s k+\frac{1}{2} m-1}{m-1} y^{m}\right] \\
\\
\end{array}=\frac{1}{n!}\left(u^{s / 2}-u^{-s / 2}\right),(u-1) u^{-1 / 2}=y .\right.
\end{aligned}
$$

Putting $u=e^{w}$ and $s=r$ to avoid mistakes in the hyperbolic formulas, we get
and
Therefore,

$$
\begin{aligned}
g_{n}(y ; r) & =\frac{1}{n!}\left[2 \sinh \left(\frac{1}{2} r w\right)\right]^{n} \\
y & =2 \sinh \left(\frac{1}{2} w\right) .
\end{aligned}
$$

$$
\begin{align*}
g_{n}(y ; r) & =\frac{1}{n!}\left[2 \sinh \left\{r \sinh ^{-1}\left(\frac{1}{2} y\right)\right\}\right]^{n} \\
& =\frac{1}{n!}\left[2 \sinh \left\{r \log \left(\frac{1}{2} y+\frac{1}{2} \sqrt{y^{2}+4}\right)\right\}\right]^{n} . \tag{3.9}
\end{align*}
$$

The corresponding generating functions for the Carlitz-Riordan central factorial numbers may be obtained as

$$
\begin{align*}
& \sum_{m=0}^{\infty} t(m, n) \frac{y^{m}}{m!}=\frac{1}{n!}\left[2 \sinh ^{-1}\left(\frac{1}{2} y\right)\right]^{n} \tag{3.10}\\
& \sum_{m=0}^{\infty} T(m, n) \frac{y^{m}}{m!}=\frac{1}{n!}\left[2 \sinh \left(\frac{1}{2} y\right)\right]^{n} \tag{3.11}
\end{align*}
$$

Using formulas (3.10), (3.11), and (3.9), and since
$\delta_{a}^{n}=\left[2 \sinh \left(\frac{1}{2} a D\right)\right]^{n}, \quad a^{n} D^{n}=\left[2 \sinh ^{-1}\left(\frac{1}{2} \delta_{a}\right)\right]^{n}, \quad \delta_{a}^{n}=\left[2 \sinh \left\{r \sinh ^{-1}\left(\frac{1}{2} \delta_{b}\right)\right\}\right]^{n}$,
we get

$$
\begin{gathered}
\delta_{a}^{n}=\sum_{m=0}^{\infty} \frac{n!}{m!} T(m, n) a^{m} D^{m}, \quad a^{n} D^{n}=\sum_{m=0}^{\infty} \frac{n!}{m!} t(m, n) \delta_{a}^{m}, \\
\delta_{a}^{n}=\sum_{m=0}^{\infty} \frac{n!}{m!} K(m, n, r) \delta_{b}^{m}, r=a / b .
\end{gathered}
$$

Finally, let
and put

$$
Q_{m}(z ; s)=\sum_{x=0}^{z}(s x)^{[m]}
$$

$$
Q_{2 m}(z ; s)=\frac{2 z+1}{2} \sum_{n=0}^{m} \frac{Q_{m, n, s}}{2 n+1} \frac{(z+n)!}{(z-n)!}
$$

Then
and by (2.10),

$$
(s x)^{[2 m]}=\sum_{n=0}^{m} Q_{m, n, s} \frac{\dot{x}(x+n-1)!}{(x-n)!}=\sum_{n=0}^{m} Q_{m, n, s} x^{[2 m]},
$$

$$
Q_{m, n, s}=K(2 m, 2 n, s)
$$

A similar expression may be obtained for $Q_{2 m+1}(z ; s)$.

REFERENCES

1. L. Carlitz \& J. Riordan. "The Divided Central Differences of Zero." Canad. J. Math. 15 (1963):94-100.
2. L. Comtet. "Nombres de Stirling generaux et fonctions symetriques." C. R. Acad. Sc. Paris, Serie A 275 (1972):747-50.
3. C. Jordan. Calculus of Finite Differences. New York: Chelsea, 1960.
4. S. M. Roman \& G.-C. Rota. "The Umbral Calculus." Advances in Mathematics 27 (1978):95-188.
5. J. Riordan. Combinatorial Identities. New York: Wiley, 1968.

* $\%$ 米米

ON THE FIBONACCI NUMBERS MINUS ONE

G. GELDENHUYS

University of Stellenbosch, Stellenbosch 7600, Republic of South Africa
Let A be the $n \times n$ matrix with elements defined by

$$
\alpha_{i j}=-1 \text { if } i=j-1 ; 1+\mu \text { if } i=j ;-\mu \text { if } i=j+2 \text {; }
$$

and 0 otherwise. If $n \geq 3$ and μ is a positive number, then A is a special case of a matrix that was shown in [1] to be useful in the design of two-up, one-down ideal cascades for uranium enrichment. The purpose of this paper is to derive certain properties of the determinant D_{n} of A and to point out its relation to the Fibonacci numbers.

Expansion of the determinant of A according to its first column leads to the recurrence relation
(1) $\quad D_{1}=1+\mu, D_{2}=(1-\mu)^{2}$, and $D_{n}=(1+\mu) D_{n-1}-\mu D_{n-3}$ for $n \geq 3$.

For convenience, set $D_{0}=1$.
By using standard techniques for generating functions, it can be shown that the generating function $D(x)$ for $\left\{D_{n}\right\}$ (with positive radius of convergence) is

$$
\begin{equation*}
D(x)=\left[1-(1+\mu) x+\mu x^{3}\right]^{-1}=\sum_{i=0}^{\infty} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j} \mu^{j}(1+\mu)^{i-j} x^{i+2 j} \tag{2}
\end{equation*}
$$

