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and so 

Since 
" 1 -V- (-I)*-1' 

we see that each #(n9 0) may be regarded as a binomial sum. 
On the other hand, 

fQ(x) - (1 - x)-1 - £** 
fc = 0 

and term by term integration of this power series gives 

fn Or) = x n ^ (fe + i) . ... . (fe +-n) " 

For n 2 2, this series converges at a; = ±1 and is uniformly convergent on the 
closed interval [-1, 1]* By Abel's theorem for power series, the values of our 
functions at the endpoints of the interval of convergence are given by the power 
series 

-, • + t \ _ V 1 „ X V tn + k\'1 = -L n 

±im xnKX) iL (fc + l) ..... (fc + n) ~ n! ̂ o \ k I n\* n - V 

by out Theorem 2, while our Theorem 3 gives 

Urn f M - f n » V ^ ( - 1 ) " f » , ^ ( n + feV1 ( - D " r • 
lim fB (x) - (-1) p k <fc + n ) - n! 2- ( 1 ) V k > n \ J n 
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TILING THE PLANE WITH INCONGRUENT REGULAR POLYGONS 

HANS HERDA 
Boston State College, Boston, MA 02115 

Professor Michael Edelstein asked me how to tile the Euclidean plane with 
squares of integer side lengths all of which are incongruent. The question can be 
answered in a way that involves a perfect squared square and a geometric applica-
tion of the Fibonacci numbers. 

A perfect squared square is a square of integer side length which is tiled 
with more than one (but finitely many) component squares of integer side lengths 
all of which are incongruent. For more information, see the survey articles [3] 
and [5]. A perfect squared square is simple if it contains no proper subrectangle 
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formed from more than one component square; otherwise it is compound. It is known 
([3], p. 884) that a compound perfect squared square must have at least 22 compo-
nents. Duijvestijn*s simple perfect squared square [2] (see Fig. 1) thus has the 
least possible number of components (21). 
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FIGURE 1 

The Fibonacci numbers are defined recursively by f1 - 1, f2 = 1, and 

(*) fn+2=fn+fn+l ( » > ! ) • 
They are used in connection with the tiling shown in Figure 2. Its nucleus is a 
21 component Duijvestijn square, indicated by diagonal hatching, having side length 
s = fi " s = 112, as in Figure 1. 
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FIGURE 2 

On top of this square we tile a one-component square s of side length f2 * s = 
s = 112, forming an overall rectangle of dimensions 2s by s. On the left side of 
this rectangle (the longer edge) we tile a square 2s of side length /3 * s = 2s = 
224, forming an overall rectangle of dimensions 3s by 2s. We now proceed counter-
clockwise as shown, each time tiling a square fns onto the required longer edge 
of the last overall rectangle of dimensions fns by fn_1s, forming a new overall 
rectangle of dimensions fn+1s by fns—this follows from (*). The tiling can con-
tinue indefinitely in this way at each stage, because fns = fn_1s + fn_i+s + /n_3s 
[this is used for n _> 5 and also follows from (*)]. A closely related Fibonacci 
tiling for a single quadrant of the plane (but beginning with two congruent 
squares) occurs in [1, p. 305, Fig. 3]. 
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If we consider the center of the nuclear hatched square as the origin, 09 of 
the plane, it is clear that the tiling eventual^ covers an arbitrary disc centered 
at 0 and thus covers the whole plane. Finally, note that all the component squares 
used in the tiling have integer side lengths and are incongruent. 

The tiling described above may be called static, since the tiles remain fixed 
where placed, and the outward growth occurs at the periphery. It is also inter-
esting to consider a dynamic tiling. Start with a Duijvestijn square. Its small-
est component has side length 2. Enlarge it by a factor of 56. The smallest com-
ponent in the resulting square has side length 112. Replace it by a Duijvestijn 
square. Now enlarge the whole configuration again by a factor of 56. Repeat this 
process indefinitely, thus obtaining the tiling., Here no tile remains fixed, out-
ward growth occurs everywhere, and it is impossible to write down a sequence of 
side lengths of squares used in the tiling. 

The three-dimensional version of this tiling problem (due to D. F. Daykin) is 
still unsolved: Can 3-space be filled with cubes, all with integer side lengths, 
no two cubes being the same size? ([4], p. 11). 

The plane can also be tiled with incongruent regular triangles and a single 
regular hexagon, all having integer side lengths. 

Begin with regular hexagon I (see Fig. 3) and tile regular triangles with side 
lengths 1, 2, 3, 4, and 5 counterclockwise around it as shown. Now tile a regular 
triangle with side length 7 along the sixth side of the hexagon. This counter-
clockwise tiling can be continued indefinitely to cover the plane. The recursion 
formula for the side lengths of the triangles is 

si = i for 1 <_ i <_ 5, s6 = 7, si = si_1 + s^_5 for i J> 7. 
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FIGURE 3 
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