$$
\left|R_{2}\right|=\frac{1}{|s-r||s-\bar{s}||s|^{n+1}}=\frac{1}{2|s-r||\operatorname{In} s||s|^{n+1}}<.26 /|s|^{n+1}<.2
$$

which along with (8) and (6) implies
so

$$
T_{n}+R_{1}=-R_{2}-R_{3},
$$

hence

$$
\left|T_{n}+R_{1}\right|=\left|R_{2}+R_{3}\right| \leq 2\left|R_{2}\right|<.4
$$

or, equivalently,

$$
\begin{aligned}
& T_{n}-.4<-R_{1}<T_{n}+.4 \\
& T_{n}<-R_{1}+.4<T_{n}+1 .
\end{aligned}
$$

Substituting the value of R_{1} from (4) into (9) we may rewrite (9) in terms of the greatest integer function and obtain the desired formula:

$$
T_{n}=\left[\frac{1}{|r-s|^{2} r^{n+1}}+.4\right]
$$

REFERENCES

1. P. Hagis. "An Analytic Proof of the Formula for F_{n}," The Fibonacci Quarterly 2 (1964):267-68.
2. A. Scott, T. Delaney, \& V.E. Hoggatt, Jr. "The Tribonacci Sequence." The Fibonacci Quarterly 15 (1977):193-200.

POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS
A. F. HORADAM

University of New England, Armidale, N.S.W., Australia
S. PETHE

University of Malaya, Kuala Lumpur 22-11, Malaysia

1. INTRODUCTION

Chebyshev polynomials $T_{n}(x)$ of the first kind and $U_{n}(x)$ of the second kind are, respectively, defined as follows:

$$
\begin{array}{ll}
T_{n}(x)=\cos \left(n \cos ^{-1} x\right) & (|x| \leq 1) \\
U_{n}(x)=\frac{\sin \left[(n+1) \cos ^{-1} x\right]}{\sin \left(\cos ^{-1} x\right)} & (|x| \leq 1)
\end{array}
$$

In 1974 Jaiswal [6] investigated polynomials $p_{n}(x)$ related to $U_{n}(x)$. In 1977 Horadam [5] obtained similar results for polynomials $q_{n}(x)$, associated with $T_{n}(x)$. The polynomials $p_{n}(x)$ and $q_{n}(x)$ are defined as follows:

$$
\left\{\begin{array}{l}
p_{n}(x)=2 x p_{n-1}(x)-p_{n-3}(x) \quad(n \geq 3) \text { with } \tag{1}\\
p_{0}(x)=0, p_{1}(x)=1, p_{2}(x)=2 x
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
q_{n}(x)=2 x q_{n-1}(x)-q_{n-3}(x) \quad(n \geq 3) \text { with } \tag{2}\\
q_{0}(x)=0, q_{1}(x)=2, q_{2}(x)=2 x
\end{array}\right.
$$

Chebyshev's polynomials of both kinds are special cases of Gegenbauer polynomials ([1], [2], [3], [8], [9]) $C_{n}^{\lambda}(x)\left(\lambda>-\frac{1}{2},|x| \leq 1\right)$ defined by

$$
C_{0}^{\lambda}(x)=1, C_{1}^{\lambda}(x)=2 \lambda x,
$$

with the recurrence relation

$$
n C_{n}^{\lambda}(x)=2(\lambda+n-1) x C_{n-1}^{\lambda}(x)-(2 \lambda+n-2) C_{n-2}^{\lambda}(x), \quad n \geq 2
$$

Polynomials $C_{n}^{\lambda}(x)$ are related to $T_{n}(x)$ and $U_{n}(x)$ by the relations
and

$$
T_{n}(x)=\frac{n}{2} \lim _{\lambda \rightarrow 0} \frac{C_{n}^{\lambda}(x)}{\lambda} \quad(n \geq 1)
$$

$$
U_{n}(x)=C_{n}^{1}(x)
$$

In Jaiswal [6] and Horadam [5], it was established that $x=1$ in (1) and (2) yields simple relationships with the Fibonacci numbers F_{n} defined by

$$
F_{0}=0, F_{1}=1, \text { and } F_{n}=F_{n-1}+F_{n-2} \quad(n \geq 2),
$$

namely,

$$
\begin{aligned}
& p_{n}(1)=F_{n+2}-1 \\
& q_{n}(1)=2 F_{n} .
\end{aligned}
$$

These results prompt the thought that some generalized Fibonacci connection might exist for $C_{n}^{\lambda}(x)$.

In the following sections, we define the polynomials $p_{n}^{\lambda}(x)$ related to $C_{n}^{\lambda}(x)$, determine their generating function, investigate a few properties, and exhibit the connection between these polynomials and Fibonacci numbers.

$$
\text { 2. THE POLYNOMIALS } p_{n}^{\lambda}(x)
$$

Letting

$$
(\lambda)_{0}=1 \quad \text { and } \quad(\lambda)_{n}=\lambda(\lambda+1) \ldots(\lambda+n-1), n=1,2, \ldots,
$$

we find that the first few Gegenbauer polynomials are

$$
\begin{equation*}
C_{0}^{\lambda}(x)=1, C_{1}^{\lambda}(x)=2 \lambda x, \quad C_{2}^{\lambda}(x)=\frac{(\lambda)_{2}}{2!}(2 x)^{2}-\lambda . \tag{4}
\end{equation*}
$$

Listing the polynomials of (4) horizontally and taking sums along the rising diagonals, we get the resulting polynomials denoted by $p_{n}^{\lambda}(x)$. The first few polynomials $p_{n}^{\lambda}(x)$ are given by

$$
\begin{equation*}
p_{1}^{\lambda}(x)=1, p_{2}^{\lambda}(x)=2 \lambda x, p_{3}^{\lambda}(x)=\frac{(\lambda)_{2}}{2!}(2 x)^{2}, p_{4}^{\lambda}(x)=\frac{(\lambda)_{3}}{3!}(2 x)^{3}-\lambda . \tag{5}
\end{equation*}
$$

We define $p_{0}^{\lambda}(x)=0$.
3. GENERATING FUNCTION

Theorem 1: The generating function $G^{\lambda}(x, t)$ of $p_{n}^{\lambda}(x)$ is given by

$$
G^{\lambda}(x, t)=\sum_{n=1}^{\infty} p_{n}^{\lambda}(x) t^{n-1}=\left(1-2 x t+t^{3}\right)^{-\lambda}
$$

Proof: Putting $2 x=y$ in (4) we obtain the following figure.

It is clear from Figure 1 that the generating function for the k th column is

$$
\frac{(-1)^{k}(\lambda)_{k}}{k!}(1-t y)^{-(\lambda+k)}
$$

Since $p_{n}^{\lambda}(x)$ are obtained by summing along the rising diagonals of Figure 1 , the row-adjusted generating function for the kth column becomes

$$
h_{k}^{\lambda}(y)=\frac{(-1)^{k}(\lambda)_{k}}{k!}(1-t y)^{-(\lambda+k)} t^{3 k}
$$

Since

$$
\sum_{k=0}^{\infty} h_{k}^{\lambda}(y)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(\lambda)_{k}}{k!}\left(\frac{t^{3}}{1-t y}\right)^{k}(1-t y)^{-\lambda}=\left(1-t y+t^{3}\right)^{-\lambda}
$$

the generating function of $p_{n}^{\lambda}(x)$ is given by

$$
\begin{equation*}
G^{\lambda}(x, t)=\sum_{n=1}^{\infty} p_{n}^{\lambda}(x) t^{n-1}=\left(1-2 t x+t^{3}\right)^{-\lambda} \tag{6}
\end{equation*}
$$

Expanding the right-hand side of (6), we obtain

$$
\begin{equation*}
p_{n+1}^{\lambda}(x)=\sum_{k=0}^{[n / 3]} \frac{(-1)^{k}(\lambda)_{n-2 k}}{(n-2 k)!}(n-2 k)(2 x)^{n-3 k} \tag{7}
\end{equation*}
$$

Observe from (1), (5), (6), and (7) that $p_{n}^{1}(x)=p_{n}(x), n=0,1, \ldots$.

4. RECURRENCE RELATION

Theorem 2: The recurrence relation is given by

$$
\begin{equation*}
p_{n}^{\lambda}(x)=\frac{(2 x)(\lambda+n-2)}{n-1} p_{n-1}^{\lambda}(x)-\frac{3 \lambda+n-4}{n-1} p_{n-3}^{\lambda}(x), \quad(n \geq 3) . \tag{8}
\end{equation*}
$$

Proof: From (7), the k th term on the right-hand side of (8) is

$$
\left.\begin{array}{rl}
& (-1)^{k} \frac{(\lambda+n-2)}{n-1} \frac{(\lambda)_{n-2-2 k}}{(n-2-2 k)!}(n-2-2 k \\
k
\end{array}\right)(2 x)^{n-3 k-1}, ~(-1)^{k-1} \frac{(3 \lambda+n-4)}{n-1} \frac{(\lambda)_{n-4-2(k-1)}}{(n-4-2(k-1))!}\binom{n-4-2(k-1)}{k-1}(2 x)^{n-3 k-1} .
$$

After simplification, this becomes

$$
\frac{(-1)^{k}(\lambda)_{n-1-2 k}(2 x)^{n-3 k-1}}{k!(n-1-3 k)!}
$$

which is the k th term on the left-hand side of (8).
Ordinary Fibonacci numbers F_{n} are expressible in two equivalent forms:

$$
\left\{\begin{array}{l}
F_{n}=F_{n-1}+F_{n-2} \cdots \tag{9}\\
F_{n}=2 F_{n-1}-F_{n-3} \cdots
\end{array}\right.
$$

Observe that expression (8) in Theorem 2 is of the form (β) in $p_{n}^{\lambda}(x)$. An attempt to obtain the recurrence relation in the corresponding form (α), namely,

$$
p_{n}^{\lambda}(x)=A p_{n-1}^{\lambda}(x)+B p_{n-2}^{\lambda}(x),
$$

where A and B are functions of λ, leads to an intractable cubic. Perhaps the form (8) that follows the patterns of the forms for $p_{n}(x)$ and $q_{n}(x)$ is the best available.

The following recurrence relation involving the derivatives of $p_{n}^{\lambda}(x)$ is easily proved.
Theorem 3:
(10)

$$
2 x\left(p_{n+2}^{\lambda}(x)\right)^{\prime}-3\left(p_{n}^{\lambda}(x)\right)^{\prime}=2(n+1) p_{n+2}^{\lambda}(x)
$$

Equation (10) corresponds to the similar results satisfied by $p_{n}(x)$ and $q_{n}(x)$.

$$
\text { 5. THE POLYNOMIALS } S_{n}(x)
$$

Define
(11)

$$
\left\{\begin{aligned}
& S_{0}(x)=0, S_{1}(x)=3, \text { and } \\
& S_{n}^{\lambda}(x) \equiv S_{n}(x)=(n-1) \lim _{\lambda \rightarrow 0}\left[\frac{p_{n}^{\lambda}(x)}{\lambda}\right] \\
&=\sum_{k=0}^{\left[\frac{n-1}{3}\right]} \frac{(-1)^{k}(n-1)}{n-2 k-1}(n-2 k-1) y^{n-1-3 k} \\
& k(y=2 x), n \geq 2
\end{aligned}\right.
$$

From (5) and (11) we obtain

$$
\left\{\begin{array}{l}
S_{2}(x)=2 x, S_{3}(x)=(2 x)^{2}, S_{4}(x)=(2 x)^{3}-3 \tag{12}\\
S_{5}(x)=(2 x)^{4}-4(2 x), S_{6}(x)=(2 x)^{5}-5(2 x)^{2}, \ldots
\end{array}\right.
$$

Using (7) and (11) and following the argument of Theorem 2, we have
Theorem 4: $\quad S_{n}(x)=2 x S_{n-1}(x)-S_{n-3}(x) \quad(n \geq 3)$.
We readily observe the similarity of the form for $S_{n}(x)$ in Theorem 4 with the forms for $p_{n}(x)$ and $q_{n}(x)$ in (1) and (2).

Letting $\lambda=1$ in (7), using (11), and comparing k th terms, we have
Theorem 5: $\quad S_{n}(x)=p_{n}(x)-2 p_{n-3}(x) \quad(n \geq 3)$.
Theorem 6: $S_{n}(x)=2 q_{n}(x)-p_{n}(x) \quad(n \geq 0)$.
Proo6: From Horadam [5, Eq. 6],

$$
\begin{equation*}
p_{n}(x)=q_{n}(x)+p_{n-3}(x) \tag{i}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
S_{n}(x) & =p_{n}(x)-2\left(p_{n}(x)-q_{n}(x)\right) \quad \text { from Theorem } 5 \text { and (i) } \\
& =2 q_{n}(x)-p_{n}(x),
\end{aligned}
$$

which proves the Theorem.
Letting $x=1$, we have by (3)

$$
S_{n}(1)=2 q_{n}(1)-p_{n}(1)=2 F_{n}-F_{n-1}+1
$$

Using the known generating functions for $p_{n}(x)$ and $q_{n}(x)$ given in [6] and [5], respectively, we can readily deduce the generating function for $S_{n}(x)$ from Theorem 6.

Theorem 2 is valid for all x. Hence Theorem 4 also follows from Theorem 2 on dividing throughout by λ and letting $\lambda \rightarrow 0$.

$$
\text { 6. THE POLYNOMIALS } q_{n}^{\lambda}(x)
$$

Instead of examining $p_{n}^{\lambda}(x)$ as obtained in (7), suppose one investigates the rising diagonal functions $q_{n}^{\lambda}(x)$ of

$$
\begin{equation*}
n \lim _{\lambda \rightarrow 0} \frac{e_{n}^{\lambda}(x)}{\lambda} \quad(n \geq 1) \tag{13}
\end{equation*}
$$

An explicit formulation of $q_{n}^{\lambda}(x)$ is

$$
\begin{equation*}
q_{n}^{\lambda}(x)=\sum_{k=0}^{[n / 3]]} \frac{(-1)^{k}(n-k)(\lambda)_{n-2 k}^{\prime}}{(n-2 k)!}\binom{n-2 k}{k} y^{n-3 k} \quad(y=2 x) \tag{14}
\end{equation*}
$$

where
(15)

$$
(\lambda)_{n-2 k}^{\prime}=\lambda(\lambda)_{n-2 k} .
$$

Writing

$$
\begin{equation*}
r_{n}^{\lambda}(x)=p_{n+1}^{\lambda}(x)-q_{n}^{\lambda}(x) \tag{16}
\end{equation*}
$$

and using (7) and (14), we obtain

$$
\begin{equation*}
r_{n}^{\lambda}(x)=\sum_{k=0}^{[n / 3]} \frac{(-1)^{k}\left(\lambda^{-1}-n+k\right)}{k!(n-3 k)!}(\lambda)_{n-2 k}^{\prime} y^{n-3 k} \tag{17}
\end{equation*}
$$

Results similar to those obtained for $p_{n}^{\lambda}(x)$ may be obtained for $q_{n}^{\lambda}(x)$. At this stage, it is not certain just how useful a study of $q_{n}^{\lambda}(x)$ and $r_{n}^{\lambda}(x)$ might be.

REFERENCES

1. A. Erdélyi et al. Higher Transcendental Functions. Vo1. 2. New York: McGrawHill, 1953.
2. A. Erdélyi et al. Tables of Integral Transforms. Vo1. 2. New York: McGrawHi11, 1954.
3. L. Gegenbauer. "Zur Theorie der Functionen $C_{n}^{v}(x)$." Osterreichische Akadamie der Wissenschaften Mathematisch Naturwissen Schaftliche Klasse Denkscriften, 48 (1884):293-316.
4. A.F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3 (1965):161-76.
5. A. F. Horadam. "Polynomials Associated with Chebyshev Polynomials of the First Kind." The Fibonacci Quarterly 15 (1977):255-57.
6. D. V. Jaiswa1. "On Polynomials Related to Tchebichef Polynomials of the Second Kind." The Fibonacci Quarterly 12 (1974):263-65.
7. W. Magnus, F. Oberhettinger, \& R. P. Soni. Formulas and Theorems for the Special Functions of Mathematical Physics. Berlin: Springer-Verlag, 1966.
8. E. D. Rainville. Special Functions. New York: Macmillan, 1960.
9. G. Szegö. Orthogonal Polynomials. American Mathematical Society Colloquium Publications, 1939, Vol. 23.

ENUMERATION OF PERMUTATIONS BY SEQUENCES-II

L. CARLITZ

Duke University, Durham, NC 27706

1. André [1] discussed the enumeration of permutations by number of sequences; his results are reproduced in Netto's book [5, pp. 105-12]. Let $P(n, s)$ denote the number of permutations of $Z_{n}=\{1,2, \ldots, n\}$ with s ascending or descending sequences. It is convenient to put

$$
\begin{equation*}
P(0, s)=P(1, s)=\delta_{0, s} \tag{1.1}
\end{equation*}
$$

André proved that $P(n, s)$ satisfies

$$
\begin{equation*}
P(n+1, s)=s P(n, s)+2 P(n, s-1)+(n-s+1) P(n, s-2), \tag{1.2}
\end{equation*}
$$

$$
(n \geq 1)
$$

The following generating function for $P(n, s)$ was obtained in [2]:

$$
\begin{equation*}
\sum_{s=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) x^{n-s}=\frac{1-x}{1+x}\left(\frac{\sqrt{1-x^{2}}+\sin z}{x-\cos z}\right)^{2} \tag{1.3}
\end{equation*}
$$

However, an explicit formula for $P(n, s)$ was not found.
In the present note, we shall show how an explicit formula for $P(n, s)$ can be obtained. We show first that the polynomial
satisfies

$$
\begin{equation*}
p_{n}(x)=\sum_{s=0}^{n} P(n+1, x)(-x)^{n-s} \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
p_{2 n}(x)=\frac{1}{2^{n-1}}(1-x)^{n-1}\left\{2 \sum_{k=1}^{n}(-1)^{n+k} A_{2 n+1, k} T_{n-k+1}(x)-A_{2 n+1}, n+1\right\} \tag{1.5}
\end{equation*}
$$

