In the case where the ring R is Z ，the set of integers，we can determine the total number of different solutions $\bmod (e, f)$ ，or $\frac{e}{f}$ ．

This number of solutions will be the smallest positive integer n such that $\left(n b_{1} e_{1}, 1\right) \equiv 0 \bmod (e, f)$ ，
i．e．，such that $e \mid n b_{1} e_{1} f$ ．
Now，as we can assume that e and f and a and b are mutually prime，this reduces to $i \mid n$ ，so the smallest n is i ．

Thus in the ring of integers，the number of noncongruent solutions mod（ e, f ） of（1）is i ．

Take，as an example，

$$
15 \frac{5}{39} x \equiv \frac{5}{6} \bmod 20 \frac{5}{52} .
$$

Clearly，g．c．d． $\left.\left(15 \frac{5}{39}, 20 \frac{5}{52}\right)=\frac{5}{156} \right\rvert\, \frac{5}{6}$ ，and we can obtain $x=-89$ as a solution to

$$
4(15.39+5) x \equiv 26.5 \bmod (60.52+15) .
$$

Now b_{1} comes to 3 and e_{1} to 209 ，so the simplest noncongruent positive integer solutions， $\bmod 20 \frac{5}{52}$ ，are $194,821,1448,2075$ ，and 2702.

REFERENCES

1．N．H．McCoy．Rings and Ideals．The Mathematical Association of America， 1948. 2．E．H．Patterson \＆O．E．Rutherford．Abstract Algebra．Edinburgh：Oliver and Boyd， 1965.

A RECURSION－TYPE FORMULA FOR SOME PARTITIONS
 AMIN A．MUWAFI
 The American University of Beirut，Beirut，Lebanon

If $p(n)$ denotes the number of unrestricted partitions of n ，the following re－ currence formula，known as Euler＇s identity，permits the computation of $p(n)$ if $p(k)$ is already known for $k<n$ ．
$p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+p(n-15)-+++\cdots$

$$
=\sum_{j \neq 0}(-1)^{j+1} p\left(n-\frac{1}{2}\left(3 j^{2}+j\right)\right),
$$

where the sum extends over all integers j ，except $j=0$ ，for which the arguments of the partition function are nonnegative．

Hickerson［1］gave a recursion－type formula for $q(n)$ ，the number of partitions of n into distinct parts，in terms of $p(k)$ for $k \leq n$ ，as follows，

$$
\begin{equation*}
q(n)=\sum_{j=-\infty}^{\infty}(-1)^{j} p\left(n-\left(3 j^{2}+j\right)\right) \tag{2}
\end{equation*}
$$

where the sum extends over all integers j for which the arguments of the partition function are nonnegative．

Alder and Muwafi［2］gave a recursion－type formula for $p^{\prime}(0, k-r, 2 k+a ; n)$ ， the number of partitions of n into parts $\not \equiv 0, \pm(k-r) \bmod 2 k+a$ ，where $0 \leq r \leq$ $k-1$ ．

$$
\begin{equation*}
p^{\prime}(0, k-r, 2 k+a ; n)=\sum_{j=-\infty}^{\infty}(-1)^{j} p\left(n-\frac{(2 k+\alpha) j^{2}+(2 r+\alpha) j}{2}\right) \tag{3}
\end{equation*}
$$

where the sum extends over all integers j for which the arguments of the partition function are nonnegative. Letting $k=a=1$ and $r=0$, formula (3) reduces to Euler's identity; and letting $k=a=2$ and $r=0$, formula (3) reduces to Hickerson's formula (2).

Ewell [3] gave two recurrence formulas for $q(2 \ell)$ and $q(2 \ell+1)$ for nonnegative integers ℓ in a slightly different, but equivalent, form to that in formula (2).

This paper presents a recursion-type formula for $p_{k}^{*}(n)$, the number of partitions of n into parts not divisible by k, where k is some given integer ≥ 1. It is shown that formulas (1) and (2) are special cases of formula (4) below.
Theorem: If $n \geq 0, k \geq 1$, and $p_{k}^{*}(n)$ is the number of partitions of n into parts not divisible by k, where $p_{k}^{*}(0)=1$, then

$$
\begin{equation*}
p_{k}^{*}(n)=\sum_{j=-\infty}^{\infty}(-1)^{j} p\left(n-\frac{k\left(3 j^{2}+j\right)}{2}\right) \tag{4}
\end{equation*}
$$

where the sum extends over all integers j for which the arguments of the partition function are nonnegative.

Proof: The generating function for $p_{k}^{*}(n)$ is given by

$$
\sum_{n=0}^{\infty} p_{k}^{*}(n) x^{n}=\frac{\prod_{j=1}^{\infty}\left(1-x^{k j}\right)}{\prod_{j=1}^{\infty}\left(1-x^{j}\right)}=\sum_{r=0}^{\infty} p(r) x^{r} \prod_{j=1}^{\infty}\left(1-x^{k j}\right)
$$

By Euler's product formula, we have

Hence

$$
\begin{aligned}
& \prod_{j=1}^{\infty}\left(1-x^{k j}\right)=\sum_{j=-\infty}^{\infty}(-1)^{j} x^{\frac{k j(3 j+1)}{2}} \\
& \sum_{n=0}^{\infty} p_{k}^{*}(n) x^{n}=\sum_{n=0}^{\infty} p(r) x^{r} \sum_{j=-\infty}^{\infty}(-1)^{j} x^{\frac{k j(3 j+1)}{2}} \\
&=\sum_{n=0}^{\infty}\left\{\sum_{j=-\infty}^{\infty}(-1)^{j} p\left(n-\frac{k j(3 j+1)}{2}\right)\right\} x^{n} .
\end{aligned}
$$

Equating coefficients on both sides of this equation, and noticing that $j=0$ when $n=0$, we get the required result in (4).
Corollary 1: If in Eq. (4) we let $k=1$, then $p_{1}^{*}(n)=0$, so that Eq. (4) becomes

$$
0=\sum_{j=-\infty}^{\infty}(-1)^{j} p\left(n-\frac{3 j^{2}+j}{2}\right)
$$

from which Eq. (1) follows by moving the term corresponding to $j=0$ to the lefthand side. Thus Eq. (1) becomes a special case of the theorem.
Corollary 2: If in Eq. (4) we let $k=2$, then $p_{2}^{*}(n)$ denotes the number of partitions of n into parts not divisible by 2 , and hence it is equal to the number of partitions of n into odd or distinct parts. Thus $p_{2}^{*}(k)=q(n)$, and Eq. (4) reduces to (2). Hence Eq. (2) is a special case of the theorem.

REFERENCES

1. Dean R. Hickerson. "Recursion-Type for Partitions into Distinct Parts." The Fibonacci Quarterly 11 (1973):307-12.
2. Henry L. Alder \& Amin A. Muwafi. "Generalizations of Euler's Recurrence Formula for Partitions." The Fibonacci Quarterly 13 (1975):337-39.
3. John A. Ewe11. "Partition Recurrences." J. Combinatorial Theory, Series A. 14 (1973):125-27.

PRIMITIVE PYTHAGOREAN TRIPLES AND THE INFINITUDE OF PRIMES
 DELANO P. WEGENER
 Central Michigan University, Mt. Pleasant, MI 48859

A primitive Pythagorean triple is a triple of natural numbers (x, y, z) such that $x^{2}+y^{2}=z^{2}$ and $(x, y)=1$. It is well known $[1, \mathrm{pp} .4-6]$ that all primitive Pythagorean triples are given, without duplication, by

$$
x=2 m n, y=m^{2}-n^{2}, z=m^{2}+n^{2}
$$

where m and n are relatively prime natural numbers which are of opposite parity and satisfy $m>n$. Conversely, if m and n are relatively prime natural numbers which are of opposite parity and $m>n$, then the above formulas yield a primitive Pythagorean triple. In this note I will refer to m and n as the generators of the triple (x, y, z) and I will refer to x and y as the legs of the triple.

A study of the sums of the legs of primitive Pythagorean triples leads to the following interesting variation of Euclid's famous proof that there areminfinitely many primes.

Suppose there is a largest prime, say p_{k}. Let m be the product of this finite list of primes and let $n=1$. Then $(m, n)=1, m>n$, and they are of opposite parity. Thus m and n generate a primitive Pythagorean triple according to the above formulas. If $x+y$ is prime, it follows from

$$
x+y=2 m n+m^{2}-n^{2}=2\left(2 \cdot 3 \cdot \cdots \cdot p_{k}\right)+\left(2 \cdot 3 \cdot \cdots \cdot p_{k}\right)^{2}-1>p_{k}^{2}
$$

that $x+y$ is a prime greater than p_{k}. If $x+y$ is composite, it must have a prime divisor greater than p_{k}. This last statement follows from the fact that every prime $q \leq p_{k}$ divides m and hence divides x. If q divides $x+y$, then it divides y, which contradicts the fact that (x, y, z) is a primitive Pythagorean triple. Thus the assumption that p_{k} is the largest prime is false.

By noting that

$$
\begin{aligned}
y-x & =\left(2 \cdot 3 \cdot \cdots \cdot p_{k}\right)^{2}-1-2\left(2 \cdot 3 \cdot \cdots \cdot p_{k}\right) \\
& =2\left(2 \cdot 3 \cdot \cdots \cdot p_{k}\right)\left(3 \cdot \cdots \cdot p_{k}-1\right)-1>p_{k}
\end{aligned}
$$

a similar proof can be constructed by using the difference of the legs of the primitive Pythagorean triple (x, y, z).

The following lemma will be useful in proving that there are infinitely many primes of the form $8 t \pm 1$.
Lemma: If (x, y, z) is a primitive Pythagorean triple and p is a prime divisor of $\overline{x+y}$ or $|x-y|$, then p is of the form $8 t \pm 1$.

$$
\begin{gathered}
\text { Proof: Suppose } p \text { divides } x+y \text { or }|x-y| \cdot \text { Note that this implies } \\
\qquad(x, p)=(y, p)=1, \quad \text { and } x \equiv \pm y(\bmod p)
\end{gathered}
$$

so that

