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In the case where the ring i? is Z, the set of integers, we can determine the 

total number of different solutions mod (e, f) 9 or 4. 

This number of solutions will be the smallest positive integer n such that 

(nb1e1, 1) E 0 mod (e, f), 
i.e., such that e\nb.e^f. 

Now, as we can assume that e and / and a and b are mutually prime, this reduces 
to i\n, so the smallest n is t. 

Thus in the ring of integers, the number of noncongruent solutions mod (e, f) 
of (1) is i. 

Take, as an example, 
5 — 5 5 

15jcrC = -g- mod 20 32". 

Clearly, g.c.d. (l5-̂ -5 20^-j = yfg- J-, and we can obtain x = -89 as a solution to 

4(15.39 + 5)x = 26.5 mod (60.52 + 15). 

Now b± comes to 3 and e1 to 209, so the simplest noncongruent positive integer 
_5_ 
52 3 
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If -pin) denotes the number of unrestricted partitions of n, the following re-
currence formula, known as Euler's identity, permits the computation of p(n) if 
p(k) is already known for k < n. 

(1) p(n) = p(n- l)+p(n- 2) -p(n- 5) -p(n- 7) + p(n- 12) + p(n- 15)—++ ••• 

£(-l)' + 1p(n -|(3j 2 + j)), 

where the sum extends over all integers j, except j - 0, for which the arguments 
of the partition function are nonnegative, 

Hickerson[l] gave a recursion-type formula for q(n), the number of partitions 
of n into distinct parts, in terms of p(k) for k <_n9 as follows, 

(2) q{n) = ]T (-DJ'p(n - (3j2 + j)), 
j.-00 

where the sum extends over all integersj for which the arguments of the partition 
function are nonnegative. 

Alder and Muwafi [2] gave a recursion-type formula for pr(0, k - r, 27c + a; n) , 
the number of partitions of n into parts t 0, ±(k - r) mod 2k + a9 where 0 £ r £ 
k - 1. 



448 A RECURSION-TYPE FORMULA FOR SOME PARTITIONS [Dec. 

(3) p'(0, k - v, 2k + a; n) - ± (-l)'p(n - {lk + a ^ \ {lr + a)A 

where the sum extends over all integers j for which the arguments of the partition 
function are nonnegative. Letting k = a = 1 and r> = 0, formula (3) reduces to Eu-
lerfs identity; and letting k = a = 2 and p = 0, formula (3) reduces to Hickerson1s 
formula (2) . 

Ewell [3] gave two recurrence formulas for q(2l) and q(2i + 1) for nonnegative 
integers £ in a slightly different, but equivalent, form to that in formula (2). 

This paper presents a recursion-type formula for p*(n), the number of parti-
tions of n into parts not divisible by k9 where k is some given integer J> 1. It 
is shown that formulas (1) and (2) are special cases of formula (4) below. 

Tko.OH.QM' If n >. 0, k _> ls and p|? (n) is the number of partitions of n into parts 
not divisible by k* where p£(0) = 1, then 

(4) 
-f s - OO \ ' 

where the sum extends over all integers j for which the arguments of the partition 
function are nonnegative. 

Vfwofc The generating function for p*(n) is given by 

n (i - **o 
w = o J"j (1 - X17') ^ = o j-i 

By Eulerfs product formula, we have 

" kjOj + l) 

n -ci - xkn = £ (~1)J* 2 

Hence '^ 1 ^ ~ c ° 
]Tp*(n)^n = ] P p ( r ) ^ 2 ] (-1)^ 2 

...'•• n = 0 ' 2» = 0 J = - °°  

n = 0 
2T 

Equating coefficients on both sides of this equation, and noticing that J = 0 when 
n = 0, we get the required result in (4). 

CoHjoJULcUiy 1: If in Eq. (4) we let k = 1, then p*(n) = 0, so that Eq. (4) becomes 

from which Eq. (1) follows by moving the term corresponding to j = 0 to the left-
hand side. Thus Eq. (1) becomes a special case of the theorem. 

CofiolZcUiy 2: If in Eq. (4) we let k = 2, then p*(n) denotes the number of parti-
tions of n into parts not divisible by 2, and hence it is equal to the number of 
partitions of n into odd or distinct parts. Thus p*'(k) = q(n) , and Eq. (4) reduces 
to (2). Hence Eq. (2) is a special case of the theorem. 
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A primitive Pythagorean triple is a triple of natural numbers (x»'y9 z) such 
that x2 + y2 = z2 and (x9 y) = 1. It is well known [1, pp. 4-6] that all primi-
tive Pythagorean triples are given, without duplication, by 

x = 2mn, y = m2 - n2, z = m2 + n2
9 

where m and n are relatively prime natural numbers which are of opposite parity 
and satisfy m > n. Conversely, if m. and n are relatively prime natural numbers 
which are of opposite parity and m > n9 then the above formulas yield a primitive 
Pythagorean triple. In this note I will refer to 77? and n as the generators of the 
triple (x9 y9 z) and I will refer to x and y as the legs of the triple. 

A study of the sums of the legs of primitive Pythagorean triples leads to the 
following interesting variation of Euclid1s famous proof that there are^nfinitely 
many primes. 

Suppose there is a largest prime, say p. . Let 77? be the product of this finite 
list of primes and let n = 1. Then (rn9 n) = 1, m > n, and they are of opposite 
parity. Thus m and n generate a primitive Pythagorean triple according to the 
above formulas. If x 4- y is prime, it follows from 

x + y = 2mn + m2 - n2 = 2(2 • 3 • ••• • pk) + (2 • 3 • •• • • pk)2 - 1 > p2 

that x + y is a prime greater than p . If x 4- y is composite, it must have a prime 
divisor greater than p. . This last statement follows from the fact that every 
prime q<.Vk divides m and hence divides x. If q divides x + y, then it divides 
y9 which contradicts the fact that (x9 y, 2) is a primitive Pythagorean triple. 
Thus the assumption that p is the largest prime is false. 

By noting that 

y - x = (2 • 3 • ••• . pk)2.- 1 - 2(2 • 3 • ••• • pk) 

= 2(2 - 3 • • •• • pk)(3 • •-• • pk - 1) - 1 > pfc> 

a similar proof can be constructed by using the difference of the legs of the 
primitive Pythagorean triple (x, y9 z) * 

The following lemma will be useful in proving that there are infinitely many 
primes of the form St ± 1.. 
Lommai If {x9 y9 z) is a primitive Pythagorean triple and p is a prime divisor of 
x + y or \x - y\ , then p is of the form St ± 1. 

?KOOJ* Suppose p divides x + y or |x - y\ * Note that this implies 

(x, p) = (y9 p)-= 1> and x =. ±2/ (mod p) 

so that 


