on square lucas numbers

BROTHER U. ALFRED
St. Mary's College, California

Among the first dozen members of the Lucas sequence $(1,3,4,7,11,18$, \cdots) there are two squares, $L_{1}=1$ and $L_{3}=4$. Are there any other squares in the Lucas sequence?

Since the period of the Lucas sequence modulo 8 is 12 , it follows that $\mathrm{L}_{12 \mathrm{k}+\lambda} \equiv \mathrm{L}_{\lambda}(\bmod 8)$, so that all possible residues are represented in the following table.

λ	$\mathrm{L}_{12 \mathrm{k}+\lambda}(\bmod 8)$
0	2
1	1
2	3
3	4
4	7
5	3
6	2
7	5
8	7
9	4
10	3
11	7

It follows that the only Lucas numbers which may be squares are $L_{12 k+\lambda}$ with $\lambda=1,3$ or 9 , since the other residues modulo 8 are quadratic non-residues of 8 .

From the general relation

$$
2 \mathrm{~L}_{\mathrm{a}+\mathrm{b}}=5 \mathrm{~F}_{\mathrm{a}} \mathrm{~F}_{\mathrm{b}}+\mathrm{L}_{\mathrm{a}} \mathrm{~L}_{\mathrm{b}}
$$

it follows if $t=2^{r}, r \geq 1$, that

$$
\begin{aligned}
2 L_{\lambda+2 t} & =5 F_{\lambda} F_{2 t}+L_{\lambda} L_{2 t} \\
& =5 F_{\lambda} F_{t} L_{t}+L_{\lambda}\left(L_{t}^{2}-2\right)
\end{aligned}
$$

so that

$$
2 \mathrm{~L}_{\lambda+2 \mathrm{t}} \equiv-2 \mathrm{~L}_{\lambda}\left(\bmod \mathrm{L}_{\mathrm{t}}\right)
$$

But $\left(L_{t}, 2\right)=1$. Hence

$$
L_{\lambda+2 t} \equiv-L_{\lambda}\left(\bmod L_{t}\right)
$$

We can use this relation to advantage by writing

$$
L_{12 k+\lambda} \text { as } L_{\lambda+2 m t}
$$

where m is odd and $t=2^{r}, r \geq 1$.
Then

$$
\begin{aligned}
L_{\lambda+2 m t} \equiv & -L_{\lambda+2(m-1) t}\left(\bmod L_{t}\right) \\
\equiv & +L_{\lambda+2(m-2) t}\left(\bmod L_{t}\right) \\
& \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
\equiv & (-1)^{m} L_{\lambda}\left(\bmod L_{t}\right)
\end{aligned}
$$

For $\lambda=1$,

$$
\mathrm{L}_{12 \mathrm{k}+1} \equiv-\mathrm{L}_{1} \equiv-1\left(\bmod \mathrm{~L}_{\mathrm{t}}\right), \quad \mathrm{t}=2^{\mathrm{r}}, \mathrm{r} \geq 1
$$

But

$$
\left(\frac{-1}{L_{t}}\right)^{*}=-1, \text { since } L_{t} \equiv 3(\bmod 4)
$$

Therefore $L_{12 k+1}$ may not be a perfect square except for $L_{1}=1$. Similarly, $L_{12 k+3}$ can be shown to be ruled out by entirely the same argument except for $L_{3}=4$.

Finally,

$$
\mathrm{L}_{12 \mathrm{k}+9}=\mathrm{L}_{4 \mathrm{k}+3}\left[\mathrm{~L}_{4 \mathrm{k}+3}^{2}+\theta\right]
$$

The θ in the bracket may be either 3 or 1 . But since only Lucas numbers $L_{4 k+2}$ are divisible by 3 , it follows that $L_{4 k+3}$ and $L_{4 k+3}^{2}+3$ are relatively prime. Therefore, if $L_{12 k+9}$ is to be a perfect square, both factors must be such. It is clear that $L_{4 k+3}$ is not a perfect square for $k=1$ or 2 . For other values, k equals either $3 k^{\prime}, 3 k^{\prime}+1$ or $3 k^{\prime}+2$ with $k^{\imath} \geq 1$. But this gives us Lucas numbers $L_{12 k^{\prime}+3}, L_{12 k^{\prime}+7}$, and $L_{12 k^{\prime}+11}$ respectively and it has already been shown that these cannot be squares.

Thus the only squares in the Lucas sequence are $L_{1}=1$ and $L_{3}=4$.

* Legendre's symbol.

