ON SQUARE LUCAS NUMBERS

BROTHER U. ALFRED St. Mary's College, California

Among the first dozen members of the Lucas sequence $(1, 3, 4, 7, 11, 18, \dots)$ there are two squares, $L_1 = 1$ and $L_3 = 4$. Are there any other squares in the Lucas sequence?

Since the period of the Lucas sequence modulo 8 is 12, it follows that $L_{12k+\lambda} \equiv L_{\lambda} \pmod{8}$, so that all possible residues are represented in the following table.

It follows that the only Lucas numbers which may be squares are $L_{12k+\lambda}$ with $\lambda = 1,3$ or 9, since the other residues modulo 8 are quadratic non-residues of 8.

From the general relation

$$2 L_{a+b} = 5 F_a F_b + L_a L_b$$

it follows if $t = 2^r$, $r \ge 1$, that

$$2 L_{\lambda+2t} = 5 F_{\lambda} F_{2t} + L_{\lambda} L_{2t}$$
$$= 5 F_{\lambda} F_{t} L_{t} + L_{\lambda} (L_{t}^{2} - 2)$$

so that

 $2 L_{\lambda+2t} \equiv -2 L_{\lambda} \pmod{L_t}$

But $(L_t, 2) = 1$. Hence

$$L_{\lambda+2t} \equiv -L_{\lambda} \pmod{L_t}$$

We can use this relation to advantage by writing

ON SQUARE LUCAS NUMBERS

 $L_{12k+\lambda}$ as $L_{\lambda+2mt}$

[Feb. 1964]

where m is odd and $t = 2^{r}$, $r \ge 1$. Then

$$L_{\lambda+2mt} \equiv -L_{\lambda+2(m-1)t} \pmod{L_t}$$
$$\equiv +L_{\lambda+2(m-2)t} \pmod{L_t}$$
$$= (-1)^m L_{\lambda} \pmod{L_t}$$

For $\lambda = 1$,

$$L_{12k+1} \equiv -L_1 \equiv -1 \pmod{L_t}, t = 2^r, r \ge 1$$

But

$$\left(\frac{-1}{L_t}\right)^* = -1$$
, since $L_t \equiv 3 \pmod{4}$

Therefore L_{12k+1} may not be a perfect square except for $L_1 = 1$. Similarly, L_{12k+3} can be shown to be ruled out by entirely the same argument except for $L_3 = 4$.

Finally,

$$\mathbf{L}_{12k+9} = \mathbf{L}_{4k+3} \left[\mathbf{L}_{4k+3}^2 + \theta \right]$$

The θ in the bracket may be either 3 or 1. But since only Lucas numbers L_{4k+2} are divisible by 3, it follows that L_{4k+3} and $L_{4k+3}^2 + 3$ are relatively prime. Therefore, if L_{12k+9} is to be a perfect square, both factors must be such. It is clear that L_{4k+3} is not a perfect square for k = 1 or 2. For other values, k equals either 3k', 3k' + 1 or 3k' + 2 with $k' \ge 1$. But this gives us Lucas numbers $L_{12k'+3}$, $L_{12k'+7}$, and $L_{12k'+11}$ respectively and it has already been shown that these cannot be squares.

Thus the only squares in the Lucas sequence are $L_1 = 1$ and $L_3 = 4$.

*Legendre's symbol.

12