$$
\lim _{x \rightarrow \infty} \frac{L_{n^{x+1}}}{L_{n^{x}}^{n-1}}=\infty
$$

which shows that, for any given $n \geq 2$, there exists an X such that, for any $\mathrm{x}>\mathrm{X}, \mathrm{F}_{\mathrm{n}^{\mathrm{X}+1}}>\mathrm{nF}_{\mathrm{n}^{\mathrm{X}}}^{\mathrm{n}}, \mathrm{L}_{\mathrm{n}^{\mathrm{X}+1}}>\mathrm{L}_{\mathrm{n}^{\mathrm{X}}}^{\mathrm{n}-1}$.

By means of (A), (B), and employing the same reasoning as in the proof of (3), $\left(3^{*}\right)$ in P, we have, for the greatest primitive divisors F_{n}^{\prime} of F_{n} and L_{n}^{\prime} of L_{n}, the following generalized inequalities:

$$
\text { SOME CORRECTIONS TO VOLUME } 1, \text { NO. } 3
$$

Page 16: In Equation (4^{*}), replace $n \geq 2$ by $n>2$.
The last line should read:
\ldots for any positive integer $n \geq 2, n>2$, respectively.

Page 17: On line 6, add $>$ to read:

$$
\alpha=\frac{1+\sqrt{5}}{2}>\frac{1+\sqrt{4}}{2}=\frac{3}{2}
$$

Line 8, Equation (7), should be corrected to read:

$$
\alpha>\frac{3}{2}
$$

On Line 11, add = to read:

$$
\beta=\frac{1-\sqrt{5}}{2}<\frac{1-\sqrt{4}}{2}=-\frac{1}{2}
$$

$$
\begin{align*}
& \mathrm{F}_{\mathrm{p}^{\mathrm{x}+1}}>\mathrm{pF}_{\mathrm{p}^{\mathrm{x}}}^{\mathrm{p-1}} \quad(\mathrm{p}-\text { a prime } \neq 5, \mathrm{p} \geq 2, \mathrm{x} \geq 1) \tag{J}\\
& \mathrm{F}_{5^{\mathrm{X}+1}}>\mathrm{F}_{5^{4}}^{4} \quad(\mathrm{x} \geq 1) \tag{K}\\
& L_{p^{\prime}+1}>{\underset{p}{x}}_{p-2}^{x} \quad(p-\text { a prime, } \quad p \geq 2, x \geq 1) .
\end{align*}
$$

