A PROPERTY OF FIBONACCI HUMBERS

R. L. GRAHAM

Bell Telephone Laboratories, Inc., Murray Hill, N.J.

1. INTRODUCTION

Let $A=\left(a_{1}, a_{2}, \cdots\right)$ denote a (possibly finite) sequence of integers. We shall let $P(A)$ denote the set of all integers of the form $\sum_{k=1}^{\infty} \epsilon_{k} a_{k}$ where ϵ_{k} is 0 or 1 . If all sufficiently large integers belong to $P(A)$ then A is said to be complete. For example, if $F=\left(F_{1}, F_{2}, \cdots\right)$, where F_{n} is the $n^{\text {th }}$ Fibonacci number, i.e., $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 0$, then F is complete (cf. [1]). More generally, it can be easily shown that F satisfies the following conditions:
(A) If any one term is removed from F then the resulting sequence is complete.
(B) If any two terms are removed from F then the resulting sequence is not complete.
(A simple proof of (A) is given in [1] ; (B) will be proved in Section 2.)
In this paper it will be shown that a "slight" modification of F produces a rather startling change in the additive properties of F. In particular, the sequence S which has $F_{n}-(-1)^{n}$ as its $n^{\text {th }}$ term has the following remarkable properties:
(C) If any finite subsequence is deleted from S then the resulting sequence is complete.
(D) If any infinite subsequence is deleted from S then the resulting sequence is not complete.

2. THE MAIN RESULTS

We first prove (B). Suppose F_{r} and F_{S} are removed from F to form F^{*} (where $\mathrm{r}<\mathrm{s}$). We show by induction that $\mathrm{F}_{\mathrm{S}+2 \mathrm{k}+1}-1 \notin \mathrm{P}\left(\mathrm{F}^{*}\right)$ for $\mathrm{k}=$ $0,1,2, \cdots$. We first note that the sum of all terms of F^{*} which do not exceed $F_{s+1}-1$ is just

$$
\sum_{\mathrm{k}=1}^{\mathrm{s}-1} \mathrm{~F}_{\mathrm{k}}-\mathrm{F}_{\mathrm{r}}=\sum_{\mathrm{k}=1}^{\mathrm{s}-1}\left(\mathrm{~F}_{\mathrm{k}+2}-\mathrm{F}_{\mathrm{k}+1}\right)-\mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\mathrm{s}+1}-1-\mathrm{F}_{\mathrm{r}}<\mathrm{F}_{\mathrm{S}+1}-1
$$

and hence $F_{S+1}-1 \notin P\left(F^{*}\right)$. Now assume that $F_{S+2 t+1}-1 \oint P\left(F^{*}\right)$ for some $t \geq 0$ and consider the integer $\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+3}-1$. The sum of all terms of F^{*} which are less than $\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+2}$ is just

$$
\sum_{\mathrm{k}=1}^{\mathrm{s}+2 t+1} \mathrm{~F}_{\mathrm{k}}-\mathrm{F}_{\mathrm{r}}-\mathrm{F}_{\mathrm{S}}=\mathrm{F}_{\mathrm{s}+2 \mathrm{t}+3}-1-\mathrm{F}_{\mathrm{r}}-\mathrm{F}_{\mathrm{s}}<\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+3}-1
$$

Thus, in order to have $\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+3}-1 \in \mathrm{P}\left(\mathrm{F}^{*}\right)$ we must have $\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+3}-1=$ $\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+2}+\mathrm{m}$, where $\mathrm{m} \in \mathrm{P}\left(\mathrm{F}^{*}\right)$. But $\mathrm{m}=\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+3}-\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+2}-1=\mathrm{F}_{\mathrm{S}+2 \mathrm{t}+1}$ - 1 which does not belong to $P\left(F^{*}\right)$ by assumption. Hence $F_{S+2 t+3}-1 \ddagger$ $\mathrm{P}\left(\mathrm{F}^{*}\right)$ and proof of (B) is completed.

We now proceed to the main result of the paper.
Theorem: Let $S=\left(s_{1}, S_{2}, \cdots\right)$ be the sequence of integers defined by $s_{n}=F_{n}-(-1)^{n}$. Then S satisfies (C) and (D).

Proof: The proof of (D) will be given first. Let the infinite subsequence $\mathrm{s}_{\mathrm{i}_{1}}<\mathrm{s}_{\mathrm{i}_{2}}<\mathrm{s}_{\mathrm{i}_{3}}<\cdots$ be deleted from S and denote the remaining sequence by S^{*}. In order to prove (D) it suffices to show that

$$
s_{i_{n}+1}-1 \notin P\left(S^{*}\right) \text { for } n \geq 4
$$

We first note that

$$
s_{i_{1}}+s_{i_{2}} \geq s_{1}+s_{2}=2
$$

Therefore, we have (cf. Eq. (1))

$$
\sum_{\substack{j=1 \\ j \neq i_{1}, i_{2}}}^{i_{n}-1} s_{j}<s_{i_{n}+1}-s_{i_{1}}-s_{i_{2}} \leq s_{i_{n}+1}-2
$$

Hence, to represent $s_{i_{n}+1}-1$ in $P\left(S^{*}\right)$ we must use some term of S^{*} which exceeds $\mathrm{s}_{\mathrm{in}_{\mathrm{n}}-1}$ (since by above, the sum of all terms of S^{*} not exceeding $\mathrm{s}_{\mathrm{i}_{\mathrm{n}}}-1$ is less than $\mathrm{si}_{\mathrm{n}}+1-1$ for $\mathrm{n} \geq 4$). Since si_{n} is missing from S^{*}, then the smallest term of S^{*} which exceeds $s_{i_{n}-1}$ is $s_{i_{n^{+}}}$(which, of course, is greater than $\mathrm{s}_{\mathrm{i}_{\mathrm{n}}+1}-1$). Thus

$$
\mathrm{s}_{\mathbf{i}_{\mathrm{n}}+1}-1 \notin \mathrm{P}\left(\mathrm{~S}^{*}\right) \text { for } \mathrm{n} \geq 4
$$

and (D) is proved.
To prove (C), let $k>4$ and let S^{\prime} denote the sequence $\left(s_{k}, s_{k+1}\right.$, $s_{k+2},^{\circ \cdot}$). For non-negative integers w and $x, P\left(S^{\prime}\right)$ is said to have no gaps of length greater than w beyond x provided there do not exist $w+1$ consecutive integers exceeding x which do not belong to $P\left(S^{\prime}\right)$. The proof of (C) is now a consequence of the following two lemmas.

Lemma 1: There exists v such that $P\left(S^{\prime}\right)$ has no gaps of length greater than v beyond s_{k}.

Lemma 2: If $\mathrm{w}>0$ and $\mathrm{P}\left(\mathrm{S}^{\prime}\right)$ has no gaps of length greater than w beyond s_{h} then there exists i such that $P\left(S^{\prime}\right)$ has no gaps of length greater than $w-1$ beyond s_{i}.

Indeed, by Lemma 1 and repeated application of Lemma 2 it follows that there exists j such that $P\left(S^{\eta}\right)$ has no gaps of length greater than 0 beyond \mathbf{S}_{j}. That is, S^{\prime} is complete, which proves (C).

Proof of Lemma 1: First note that
$s_{2 n}+s_{2 n+1}=F_{2 n}-(-1)^{2 n}+F_{2 n+1}-(-1)^{2 n+1}=F_{2 n}+F_{2 n+1}=F_{2 n+2}=$

$$
\mathrm{s}_{2 \mathrm{n}+2}+1
$$

Similarly,

$$
\begin{aligned}
s_{2 n+1}+s_{2 n+2} & =F_{2 n+1}-(-1)^{2 n+1}+F_{2 n+2}-(-1)^{2 n+2} \\
& =F_{2 n+1}+F_{2 n+2}=F_{2 n+3}=s_{2 n+3}-1
\end{aligned}
$$

Also, we have
(1)

$$
\left\{\begin{aligned}
s_{1}+s_{2}+\cdots+s_{n} & =\left(F_{1}+1\right)+\left(F_{2}-1\right)+\cdots+\left(F_{n}-(-1)^{n}\right) \\
& =\sum_{j=1}^{n} F_{j}+\epsilon_{n}=\sum_{j=1}^{n}\left(F_{j+2}-F_{j+1}\right)+\epsilon_{n} \\
& =F_{n+2}-1+\epsilon_{n} \\
& =s_{n+2}-\epsilon_{n}
\end{aligned}\right.
$$

where

$$
\epsilon_{\mathrm{n}}= \begin{cases}0 & \text { for } \mathrm{n} \text { even } \\ 1 & \text { for } \mathrm{n} \text { odd }\end{cases}
$$

Thus

$$
\sum_{j=m}^{n} s_{j}=s_{n+2}-s_{m+1}-\epsilon_{n}+\epsilon_{m-1} \text { for } n \geq m
$$

Now, let $h>k+1$ and let

$$
\mathrm{P}^{\prime}=P\left(\left(s_{k^{\prime}}, s_{k+1}, \cdots, s_{h}\right)\right)=\left\{p_{1}^{\prime}: p_{2}^{\prime}, \cdots, p_{n}^{\prime}\right\}
$$

where $\mathrm{p}_{1}^{\prime}<\mathrm{p}_{2}^{\prime}<\cdots<\mathrm{p}_{\mathrm{n}}^{\prime}$. Let

$$
v=\max _{1 \leq r \leq n-1}\left(p_{r+1}^{\prime}-p_{r}^{\prime}\right)
$$

Then

$$
\begin{aligned}
h>k+1> & \Rightarrow s_{h} \geq s_{k+1}+2 \\
& \Longrightarrow s_{h} \geq s_{k+1}+\epsilon_{h}-\epsilon_{k+1}+1 \\
& \Longrightarrow s_{h+2}-s_{h+1} \geq s_{k+1}+\epsilon_{h}-\epsilon_{k+1} \\
& \Longrightarrow s_{h+1} \leq s_{h+2}-s_{k+1}-\epsilon_{h}+\epsilon_{k+1}=\sum_{j=1}^{h} s_{j}
\end{aligned}
$$

Since

$$
\max _{1 \leq \mathrm{r} \leq \mathrm{n}-1}\left(\left(\mathrm{p}_{\mathrm{r}+1}^{\prime}+\mathrm{s}_{\mathrm{h}+1}\right)-\left(p_{\mathrm{r}}^{1}+\mathrm{s}_{\mathrm{h}+1}\right)\right)=\mathrm{v}
$$

then in

$$
\begin{aligned}
P^{\prime \prime} & =P\left(\left(s_{k}, \cdots, s_{h}, s_{h+1}\right)\right) \\
& =P\left(\left(s_{k^{\prime}}, \cdots, s_{h}\right)\right) \cup\left\{q+s_{h+1}: q \in P\left(\left(s_{k^{\prime}}, \cdots, s_{h}\right)\right)\right\} \\
& =\left\{p_{1}^{\prime \prime}, p_{2}^{\prime \prime} \cdots, p_{n^{\prime}}^{\prime \prime}\right\}
\end{aligned}
$$

where $\mathrm{p}_{1}^{\prime \prime}<\mathrm{p}_{2}^{\prime \prime}<\ldots<\mathrm{p}_{\mathrm{n}^{\prime \prime}}^{\prime \prime}$, we have

$$
\max _{1 \leq r \leq n^{\prime}-1}\left(p_{r+1}^{\prime \prime}-p_{r}^{\prime \prime}\right) \leq v
$$

Similarly, since

$$
h>k+1>5 \Rightarrow s_{h+2} \leq \sum_{j=k}^{h+1} s_{j}
$$

then in

$$
P^{\prime \prime \prime}=p\left(\left(s_{k^{\prime}}, \cdots, s_{h+2}\right)\right)=\left\{p_{1}^{\prime \prime \prime}, p_{2}^{\prime \prime \prime}, \cdots, p_{n^{\prime \prime}}^{\prime \prime \prime}\right\}
$$

where $p_{1}^{\prime \prime \prime}<p_{2}^{\prime \prime \prime}<\cdots<p_{n^{\prime \prime}}^{\prime \prime \prime}$, we have

$$
\max _{1 \leq r \leq n^{\prime \prime}-1}\left(p_{r+1}^{\prime \prime \prime}-p_{r}^{\prime \prime \prime}\right) \leq v, \text { etc. }
$$

By continuing in this way, Lemma 1 is proved.
The proof of Lemma 2 is a consequence of the following two results:
(a) For any $r \geq 0$ there exists t such that $m>t$ implies all the integers

$$
s_{m}+y, \quad y=0, \pm 1, \pm 2, \cdots, \pm(r-1)
$$

belong to $\mathrm{P}\left(\mathrm{S}^{\top}\right)$.
(b) There exists r^{\prime} such that for all sufficiently large $h^{\prime}, P\left(S^{\prime}\right)$ has no gaps of length greater than $w-1$ between $s_{h^{\prime}}+r^{\prime}$ and $s_{h^{\prime}+1}-$ r^{p} (i, e., there do not exist w consecutive integers exceeding s_{h}, $+r^{\prime}$ and less than $s_{h^{\prime}+1}-r^{\prime}$ which are missing from $P\left(S^{\prime}\right)$).
Therefore, for s_{i} sufficiently large, $P\left(S^{\prime}\right)$ has no gaps of length greater than w-1 beyond s_{i}, which proves Lemma 2 。

Proof of (a): Choose p such that

$$
2 p-3 \geq k \quad \text { and } \quad s_{2 p-2} \geq r
$$

and choose n such that

$$
\mathrm{n} \geq \mathrm{s}_{2 \mathrm{p}-2}+\mathrm{p} \quad \text { and } \quad \mathrm{n} \geq \mathrm{r}+\mathrm{k}
$$

Then
$\sum_{i=n-m}^{n} s_{2 i-1}+\sum_{j=2 p-3}^{2 n-2 m-4} s_{j}=\sum_{i=1}^{n} s_{2 i-1}-\sum_{i=1}^{n-m-1} s_{2 i-1}+\sum_{j=2 p-3}^{2 n-2 m-4} s_{j}$

$$
\begin{aligned}
& =n+\sum_{i=1}^{n} F_{2 i-1}-n+m+1-\sum_{i=1}^{n-m-1} F_{2 i-1}+\sum_{j=2 p-3}^{2 n-2 m-4} s_{j} \\
& =m+1+F_{2 n}-F_{2 n-2 m-2}+s_{2 n-2 m-2}+0-s_{2 p-2}-0 \\
& =s_{2 n}-\left(s_{2 p-2}-m-1\right), \text { for } 0 \leq m \leq n-p-1
\end{aligned}
$$

Since $2 p-3 \geq k$, then all the summands used on the left-hand side are in S^{\prime} 。 Hence, all the integers

$$
s_{2 n}-\left(s_{2 p-2}-m-1\right), \quad 0 \leq m \leq n-p-1
$$

belong to $P\left(S^{\prime}\right)$. Since $n \geq s_{2 p-2}+p$, then

$$
n-p-1 \geq s_{2 p-2}-1
$$

Therefore, all the integers

$$
s_{2 n}-\left(s_{2 p-2}-m-1\right), \quad 0 \leq m \leq s_{2 p-2}-1
$$

belong to $\mathrm{P}\left(\mathrm{S}^{\prime}\right)$, i. e., all the integers

$$
s_{2 n}-m^{\prime}, \quad 0 \leq m^{\prime} \leq s_{2 p-2}-1
$$

But $s_{2 p-2} \geq r$, so that we finally see that all the integers

$$
s_{2 n}-m^{\prime}, \quad 0 \leq m^{t} \leq r-1
$$

belong to $\mathrm{P}\left(\mathrm{S}^{\prime}\right)$.
To obtain sums which exceed $s_{2 n}$, note that for $1 \leq m \leq n-k$ we have

$$
\begin{aligned}
\sum_{j=n-m+1}^{n} s_{2 j-1}+s_{2 n-2 m} & =\sum_{j=1}^{n} s_{2 j-1}-\sum_{j=1}^{n-m} s_{2 j-1}+s_{2 n-2 m} \\
& =n+F_{2 n}-(n-m)-F_{2 n-2 m}+s_{2 n-2 m} \\
& =m+F_{2 n}-1 \\
& =m+s_{2 n}
\end{aligned}
$$

Since the sums

$$
\sum_{j=n-m+1}^{n} s_{2 j-1}+s_{2 n-2 m} \text { for } m=1,2, \ldots, n-k
$$

are all elements of $P\left(S^{\prime}\right)$, and since $n-k \geq r$, then all the integers

$$
\mathrm{s}_{2 \mathrm{n}}+\mathrm{m}, \quad 1 \leq \mathrm{m} \leq \mathrm{r},
$$

belong to $P\left(S^{\prime}\right)$.
Arguments almost identical to this show that for all sufficiently large n, all the integers

$$
s_{2 n+1}+m, \quad m=0, \pm 1, \cdots, \pm(r-1)
$$

belong to $P\left(S^{\prime}\right)$. This proves (a).
Proof of (b): We first give a definition. Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a finite sequence of integers. The point of symmetry of $P(A)$ is defined to be the number $\frac{1}{2} \sum_{k=1}^{n} a_{k}$. The reason for this terminology arises from the fact that if $P(A)$ is consideredas a subset of the real line, then $P(A)$ is symmetric about the point $\frac{1}{2} \sum_{k=1}^{n} a_{k}$. For we have
$p=\sum_{k=1}^{n} \epsilon_{k} a_{k} \in P(A) \Longleftrightarrow \sum_{k=1}^{n}\left(1-\epsilon_{k}\right) a_{k}=\sum_{k=1}^{n} a_{k}-p \epsilon P(A)$
and the points p and $\sum_{k=1}^{n} a_{k}-p$ are certainly equidistant from $\frac{1}{2} \sum_{k=1}^{n} a_{k}$.

Now note that if r is sufficiently large then
and

$$
\begin{gathered}
s_{r-1}>3>-s_{k+1}+3 \\
s_{r+1}-s_{r}>-s_{k+1}+2 \\
s_{r}+1-s_{k+1}<s_{r+1}-1 \\
s_{r+2}-s_{r+1}-s_{k+1}<s_{r+1}+\epsilon_{r}-\epsilon_{k+1} \\
s_{r+2}-s_{k+1}<2 s_{r+1}+\epsilon_{r}-\epsilon_{k+1}
\end{gathered}
$$

Therefore

$$
\frac{1}{2} \sum_{j=k}^{r} s_{j}=\frac{1}{2}\left(s_{r+2}-s_{k+1}-\epsilon_{r}+\epsilon_{k+1}\right)<s_{r+1}
$$

and

$$
\frac{1}{2}\left(s_{r+2}-s_{k+1}-\epsilon_{r}+\epsilon_{k+1}\right)>s_{h}
$$

for all sufficiently large r. In other words, for all sufficiently large r, the point of symmetry of $P\left(\left(s_{k}, \cdots, s_{r}\right)\right)$ lies between s_{h} and s_{r+1}. By hypothesis no gaps of length greater than w occur in $P\left(S^{\prime}\right)$ beyond s_{h}. Since $h>k$ >4 implies

$$
s_{h}<s_{h+1}<s_{h+2}<\cdots,
$$

then no gaps of length greater than w can occur in $P\left(\left(s_{k}, \cdots, s_{r}\right)\right)$ between s_{h} and s_{r+1}. (For if they did, then they would remain in $P\left(S^{\prime}\right)$ since s_{r+1} $<\mathrm{s}_{\mathrm{r}+2}<\cdots$.) But

$$
s_{r+1}>\frac{1}{2} \sum_{j=k}^{r} s_{j}
$$

and $\frac{1}{2} \sum_{j=k}^{r} s_{j}$ is the point of symmetry of $P\left(\left(s_{k}, \cdots, s_{r}\right)\right)$. Therefore,

$$
\sum_{j=k}^{r} s_{j}-s_{r+1}<\frac{1}{2} \sum_{j=k}^{r} s_{j}
$$

and by symmetry no gaps of length greater than w occur in $P\left(\left(s_{k}, \cdots, s_{r}\right)\right)$ between

$$
\sum_{j=k}^{r} s_{j}-s_{r+1} \text { and } \sum_{j=k}^{r} s_{j}-s_{h}
$$

Thus, no gaps of length greater than w occur between s_{h} and

$$
\sum_{j=k}^{r} s_{j}-s_{h}=s_{r+2}-s_{k+1}-\epsilon_{h}+\epsilon_{k+1}-s_{h}
$$

provided that r is sufficiently large. Now consider $P\left(\left(s_{k}, \cdots, s_{r+3}\right)\right)$. Since

$$
\mathrm{s}_{\mathrm{r}+1}+\mathrm{s}_{\mathrm{r}+2}=\mathrm{s}_{\mathrm{r}+3}+(-1)^{\mathrm{r}+1}
$$

then $s_{r+1}+s_{r+2}+p$ and $s_{r+3}+p$ are elements of $P\left(\left(s_{k}, \ldots, s_{r+3}\right)\right)$ which differ by 1 whenever p is an element of $P\left(\left(s_{k}, \cdots, s_{r}\right)\right)$. Hence, since in $P\left(\left(s_{k^{\prime}}, \cdots, s_{r}\right)\right)$ there are no gaps of length greater than w between s_{h} and $\sum_{j=k}^{r} s_{j}-s_{h}$, then in $P\left(\left(s_{k}, \cdots, s_{r+3}\right)\right)$ there are no gaps of greater length than w-1 between

$$
s_{h}+s_{r+3} \text { and } \sum_{j=k}^{r} s_{j}-s_{h}+s_{r+3}
$$

Similarly, consider $P\left(\left(s_{k}, \cdots, s_{r+4}\right)\right)$. Since

$$
\mathrm{s}_{\mathrm{r}+2}+\mathrm{s}_{\mathrm{r}+3}=\mathrm{s}_{\mathrm{r}+4}+(-1)^{\mathrm{r}+2}
$$

and there are no gaps in $\left.\mathrm{P}\left(\mathrm{s}_{\mathrm{k}^{\prime}} \cdots, \mathrm{s}_{\mathrm{r}+1}\right)\right)$ of length greater than w between s_{h} and $\sum_{j=k}^{r+1} s_{j}-s_{h}$, then there are no gaps in $P\left(\left(s_{k}, \cdots, s_{r+4}\right)\right)$ of length greater than w-1 between

$$
s_{h}+s_{r+4} \text { and } \sum_{j=k}^{r+1} s_{j}-s_{h}+s_{r+4}
$$

In general, for $\mathrm{q}>0$ since $\mathrm{s}_{\mathrm{r}+\mathrm{q}}+\mathrm{s}_{\mathrm{r}+\mathrm{q}+1}=\mathrm{s}_{\mathrm{r}+\mathrm{q}+2}+(-1)^{\mathrm{r}+\mathrm{q}}$ and there are no gaps in $P\left(\left(s_{k}, \cdots, s_{r+q-1}\right)\right)$ of length greater than w between s_{h} and $\mathrm{r}+\mathrm{q}-1$
$\sum_{j=k} s_{j}-s_{h}$, then there are no gaps $\operatorname{in~}_{r+q-1} P\left(s_{k}, \cdots, s_{r+q+2}\right)$) of length greater than $w-1$ between $\mathrm{s}_{\mathrm{h}}+\mathrm{s}_{\mathrm{r}+\mathrm{q}+2}$ and $\sum_{\mathrm{j}=\mathrm{k}} \mathrm{s}_{\mathrm{j}}-\mathrm{s}_{\mathrm{h}}+\mathrm{s}_{\mathrm{r}+\mathrm{q}+2}$. But

$$
\begin{aligned}
\sum_{j=k}^{r+q-1} s_{j}-s_{h}+s_{r+q-2} & =s_{r+q+1}-s_{k+1}-\epsilon_{r+q+1}+\epsilon_{k+1}-s_{h}+s_{r+q+2} \\
& =s_{r+q+3}+(-1)^{r+q+1}-s_{k+1}-s_{h}-\epsilon_{r+q+1}+\epsilon_{k+1} \\
& \geq s_{r+q+3}-s_{k+1}-s_{h}-2 .
\end{aligned}
$$

Therefore, if we let

$$
\mathrm{r}^{\prime}=\mathrm{s}_{\mathrm{k}+1}+\mathrm{s}_{\mathrm{h}}+2
$$

then for all sufficiently large z, there are no gaps in $P\left(\left(s_{k}, \cdots, s_{z}\right)\right)$ of length greater than $w-1$ between $s_{z}+r^{\prime}$ and $s_{z+1}-r^{\prime}$ (since the preceding argument is valid for $q>0$ and all sufficiently large r). This completes the proof of (b) and the theorem.

3. CONCLUDING REMARKS

Examples of sequences of positive integers which satisfy both (C) and (D) are rather elusive. It would be interesting to know if there exists such a sequence, say $T=\left(t_{1}, t_{2}, \cdots\right)$, which is essentially different from S, e.g., such that

$$
\lim _{n \rightarrow \infty} \frac{t_{n+1}}{t_{n}} \neq \frac{1+\sqrt{5}}{2}
$$

The author wishes to express his gratitude to the referee for several suggestions which made the paper considerably more readable.

REFERENCE

1. J. L. Brown, "On Complete Sequences of Integers," Amer. Math. Monthly, 68 (1961) pp. 557-560.

