SOME MEW FIBORACCI IDENTITIES

VERNER E. HOGGATT, JR. and MARJORIE BICKNELL
 San Jose State College, San Jose, California

In this paper, some new Fibonacci and Lucas identities are generated by matrix methods.

The matrix

$$
R=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

satisfies the matrix equation

$$
R^{3}-2 R^{2}-2 R+I=0
$$

Multiplying by R^{n} yields

$$
\begin{equation*}
R^{n+3}-2 R^{n+2}-2 R^{n+1}+R^{n}=0 \tag{1}
\end{equation*}
$$

It has been shown by Brennan [1] and appears in an earlier article [2] and as Elementary Problem B-16 in this quarterly that
(2) $\quad R^{n}=\left(\begin{array}{lcc}F_{n-1}^{2} & F_{n-1} F_{n} & F_{n}^{2} \\ 2 F_{n} F_{n-1} & F_{n+1}^{2}-F_{n-1} F_{n} & 2 F_{n} F_{n+1} \\ F_{n}^{2} & F_{n} F_{n+1} & F_{n+1}^{2}\end{array}\right)$
where F_{n} is the $n^{\text {th }}$ Fibonacci number.
By the definition of matrix addition, corresponding elements of R^{n+3}, R^{n+2}, R^{n+1} and R^{n} must satisfy the recursion formula given in Equation (1). That is, for example,

$$
\mathrm{F}_{\mathrm{n}+3}^{2}-2 \mathrm{~F}_{\mathrm{n}+2}^{2}-2 \mathrm{~F}_{\mathrm{n}+1}^{2}+\mathrm{F}_{\mathrm{n}}^{2}=0
$$

and

$$
F_{n+3} F_{n+4}-2 F_{n+2} F_{n+3}-2 F_{n+1} F_{n+2}+F_{n} F_{n+1}=0
$$

Returning again to

$$
R^{3}-2 R^{2}-2 R+I=0,
$$

this equation can be rewritten as

$$
(R+I)^{3}=R^{3}+3 R^{2}+3 R+I=5 R(R+I)
$$

In general, by induction, it can be shown that

$$
\begin{equation*}
R^{p}(R+I)^{2 n+1}=5^{n} R^{n+p}(R+I) \tag{3}
\end{equation*}
$$

Equating the elements in the first row and third column of the above matrices, by means of Equation (2), we obtain

$$
\begin{equation*}
\sum_{i=0}^{2 n+1}\binom{2 n+1}{i} F_{i+p}^{2}=5^{n} F_{2(n+p)+1} \tag{4}
\end{equation*}
$$

It is not difficult to show that the Lucas numbers and members of the Fibonacci sequence have the relationship

$$
\mathrm{L}_{\mathrm{n}}^{2}-5 \mathrm{~F}_{\mathrm{n}}^{2}=(-1)^{\mathrm{n}} 4
$$

Since also

$$
\sum_{i=0}^{2 n+1}\binom{2 n+1}{i}(-1)^{i+p}=0
$$

we can derive the following sum of squares of Lucas numbers,

$$
\sum_{i=0}^{2 n+1}\binom{2 n+1}{i} L_{i+p}^{2}=5^{n+1} F_{2(n+p)+1}
$$

by substitution of the preceding two identities in Equation (4).
Upon multiplying Equation (3) on the right by $(R+I)$, we obtain

$$
\begin{equation*}
R^{p}(R+1)^{2 n+2}=5^{n} R^{n+p}(R+I)^{2} \tag{5}
\end{equation*}
$$

Then, using the expression for R^{n} given in Equation (2) and the identity

$$
L_{k}=F_{k-1}+F_{k+1}
$$

we find that

$$
\begin{aligned}
\left(R^{n+1}+R^{n}\right)(R+I) & =\left(\begin{array}{ccc}
F_{2 n-1} & F_{2 n} & F_{2 n+1} \\
2 F_{2 n} & 2 F_{2 n+1} & 2 F_{2 n+2} \\
F_{2 n+1} & F_{2 n+2} & F_{2 n+3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 2 \\
1 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
L_{2 n} & L_{2 n+1} & L_{2 n+2} \\
2 L_{2 n+1} & 2 L_{2 n+2} & 2 L_{2 n+3} \\
L_{2 n+2} & L_{2 n+3} & L_{2 n+4}
\end{array}\right)
\end{aligned}
$$

Finally, by equating the elements in the first row and third column of the matrices of Equation (5), we derive the two identities

$$
\sum_{i=0}^{2 n+2}\binom{2 n+2}{i} F_{i+p}^{2}=5^{n} L_{2(n+p)}
$$

and

$$
\sum_{i=0}^{2 n+2}\binom{2 n+2}{i} L_{i+p}^{2}=5^{n+1} L_{2(n+p)}
$$

By similar steps, by equating the elements appearing in the first row and second column of the matrices of Equations (3) and (5), we can write the additional identities,

$$
\sum_{i=0}^{2 n+1}\binom{2 n+1}{i} F_{i-1+p} F_{i+p}=5^{n} F_{2(n+p)}
$$

and

$$
\sum_{i=0}^{2 n+2}\binom{2 n+2}{i} F_{i-1+p} F_{i+p}=5^{n} L_{2(n+p)+1}
$$

REFERENCES

1. From the unpublished notes of Terry Brennan.
2. Marjorie Bicknell and Verner E. Hoggatt, Jr., "Fibonacci Matrices and Lambda Functions," The Fibonacci Quarterly, 1 (1963), April, pp. 47-52.
 TWO CORRECTIONS, VOL. 12 NO. 4

Page 73: In proposal B-26, the last equation should read

$$
B_{n}(x)=(x+1) B_{n-1}(x)+b_{n-1}(x)
$$

Page 74: In proposal B-27, the line for $\cos n \phi$ should read

$$
\cos n \phi=P_{n}(x)=\sum_{j=1}^{N} A_{j n} x^{n+2-2 j}(N=[(n+2) / 2]
$$

