
k PRIMER FOR THE FIBONACCI NUMBERS - PART V 

V E R N E R E. H O G G A T T , J R . and I. D. R U G G L E S 
San J o s e S ta te C o l l e g e , San J o s e , C a l i f o r n i a 

CORRECTION' 

Read the l a s t displayed equation, on page 67 of P a r t IV, as 

Tan { T a n " 1 i - T a n " 1 % - l } - ( - l ) n + 1 ( % ^ - ) ^ 

1. INTRODUCTION 

In Section 8 of P a r t IV, we d i scussed an a l ternat ing s e r i e s . This t ime 

we shall lay down some brief foundations of sequences and infinite s e r i e s . This 

leads to some ve ry in te res t ing r e s u l t s in this i s sue and to the b road topic of 

generat ing functions in the next i s sue and to continued fract ions in the i s sue 

after that. Many Fibonacci numbers shall appear . 

2. SEQUENCES 

Definition: An o r d e r e d se t of numbers a1f a9 ,ao,•• ' • . ,a , • • • i s ca l led an l s c t 2 J c L 3 9 n? 

infinite sequence of number s . If t he re a r e but a finite number of the a s , a~i 9 ao$ 

• ° » , a then i t is a finite sequence of number s . 

A sequence of r ea l numbers {a } _1 i s said to have a r ea l number , a, 

a s a l imi t (written _^ ^ a . = a) if for every posi t ive r e a l number e 9 la - a) < 

e for all but a finite number of the m e m b e r s of the sequence {a }. If the s e -

quence {a } has a l imi t , this l imi t i s unique and the sequence i s sa id to con-

verge to this l imit . If the sequence {a } fails to approach a l imi t , then the 

sequence i s sa id to d iverge . We now give examples of each kind. 

If a = 1. {a } = l . l . l , - • • converges s ince a. = 1. 
n s L n J 3 9 9 & n-*°° n 

If a = l / n , {a } = 1 , 1 / 2 , 1 / 3 , - • * , l / n , • • • converges to ze ro . 
If a = ( - 1 ) , {a } = 1 , - 1 , + 1 , -1,+1,« • • d iverges by oscil lat ion. That 

i s , i t does not approach any l imi t . 

If a = n, {a } = 1 , 2 , 3 , ' • • d iverges to plus infinity. 
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Finally if a = ——, then {a } = -^ 9 — , ••• converges to one. n n i x n ^ s 
Some limit theorems for sequences are the following: 
If {a } and {b } are two sequences of real numbers with limits a and 

b, respectively, then 

l im , , u \ , i 
n-^oo(a + b ) = a + b 11 v n n ; 

lim , u \ t. 
n-*oo(a - b ) = a - b x n n ' 
lim , , 

n-̂ oo (ca ) = ca, any real c 
lim , , 

n->oo a b = ab 
n n 

n l i ^ ( a n / b n ) = a/b9 b * 0 . 

3. BOUNDED MONOTONE SEQUENCES 

The sequence {a } is said to be bounded if there exists a positive num-
ber, K, such that la | <K for all n > 1. If a , . ^ a , for n ^ 19 the 

* * I nl • n+1 n1 * 
sequence {a } is said to be a monotone increasing sequence; if a —a ,-. 
for n ^ 1, the sequence is monotone decreasing sequence. If a sequence is 
such that it is either monotone increasing or monotone decreasing it will be 
called a monotone sequence. 

The following useful and important theorem is stated without proof: 
Theorem 1: A bounded monotone sequence converges. 
As an example, consider the sequence {(1+ l / n ) n } , this sequence is 

monotone increasing and bounded above by 3. The limit of this sequence is 
well known. We will use Theorem 1 in the material to come. 

4. ANOTHER IMPORTANT THEOREM 

The following sufficient conditions for the convergence of an alternating 
series are given below. 

Theorem 2: If, for the sequence { s n } , 

1. Sj > 0, 
2« ( S n- l " S n ) ( - 1 ) n > (Sn " V l H"1^1 > °' f ° r n " 2" 
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lim g _ = 
n~~ oo n n + 1 ; s 

then the sequence {S } converges to a limits S5 such that 0 < S < S1e n * 

5, AN EXAMPLE OF AN APPLICATION OF THEOREM 2 

For the following example a limit is known to exist by the application of 
Theorem 2 of Section 4. 

Let S = F / F - , where {F } is the Fibonacci sequence, then S -
i-A 11 11 ' X 11 -. . 11""" J. 

- S = (-1) / ( F F _L1 ). By Theorem 2 above, i i m S exists. n x ' ' v n n + 1 ; J 9 n~* °° n 
To find the limit9 consider 

Fn+1 =
 F n - 1 

F F 
n n 

which in terms of {S \ is 1/S = 1 + S n. Let the limit of S as n tends 1 nf n n-1 n 
to infinity be Ss then lim S = lim S . = S > 0. Applying the limit 
theorems of Section 2, it follows that S satisfies 

S = ZTT-Z or S2 + S - 1 = 0 
1 + S 

Thus S > 0 is given by 

NT5 S = 

the positive root of the quadratic equation S2 + S - 1 = 0o 

6. INFINITE SERIES 

If we add together the members of a sequence {a }, we get the infinite 
series Sit + a2 + • • • + a + • • • . We now get another sequence from this in-
finite series. . 

Define a sequence (S } in the following way. Let St = at = 2 a.9 S2 
2 n n i=l * 

= 8L4 + din = 2 a.9 • • • or in general S = a-. + a? + • • • + a = 2 a.. This is 
i=l . i= l 

called the sequence of partial sums of the infinite series. The infinite series 
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can a lso be denoted by 

A = a-! + a2 + a3 + • • • + a + 
i= l 

If the sequence { Sn} converges to a l imi t , S, then the infinite s e r i e s , 

A, i s sa id to converge and converge to the l imi t S; o therwise s e r i e s A i s 

sa id to d iverge . 

7. SPECIAL RESULTS CONCERNING SERIES 

1. If an infinite s e r i e s A = a1 + a2 + • • • + a + • • • converges , then 

n-Sooa = 0. This i s immedia te s ince a = S - S . . n n n n - 1 
2. F r o m Section 3 above, an infinite s e r i e s of posi t ive t e r m s converges 

if the pa r t i a l sums a r e bounded above s ince the par t i a l sums form a monotone 

inc reas ing sequence. 
3„ F o r the a l te rna t ing s e r i e s 

( - l ) n + a n such that a n > 0, n ^ 1; a n + 1 ^ a n , n ^ 1; n ^ o 0 a n = 0 

n=l 

then by Section 4, above, the infinite s e r i e s converges ; in the theo rem 

n 
Sn - I (-19 a. . 

An example of an a l ternat ing s e r i e s was seen in P a r t IV, Section 8, of 

this P r i m e r . 

8. FIBONACCI NUMBERS, LUCAS NUMBERS AND II 

It i s well known and easi ly verif ied that 

| = Tan""1 ~ = Tan""1 | + Tan""1 | 

Also one can verify 
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7 = T a n " 1 \ = T a n " 1 ~ + T a n " 1 ~ + T a n " 1 ~ 
4 1 Z D o 

or 

n _ - n . , _ - i i ' ^ - i i• _ - i i 
T = Tan - + Tan - + Tan 77 + Tan -
4 O D ( O 

We note Fibonacci and Lucas numbers h e r e , sure ly . We shall he re easi ly e x -

tend these r e s u l t s in s eve ra l ways. 

In this sect ion we shall use seve ra l new ident i t ies which a r e left a s e x e r -

c i s e s for the r e a d e r and will be marked with an a s t e r i sk . 

* L e m m a 1: L 2 L 2 0 - 1 = 5 F2 • - . This i s rea l ly a special c a se of a 

genera l iza t ion of B-22 , p . 769 Oct. , 1963, Fibonacci Quar ter ly . 

L e m m a 2: L^ = L 2 n + 2 ( - l ) n 

L e m m a 3: L2 - 5 F 2 = 4 ( - l ) n 
n n v •' 

*L e m m a 4 : LnLn+l = W ^ " 1 ? 

We now discuss 

Theorem 3: If tan ^ n = l / L , then 

T a n ( * 9 + ^n+9) - 1 / F - + 1 or T a n " 1 = - i - = T a n " 1 X 
2 n T ^2n+2> ~ ' * 2 n + l F 2 n + 1 « L 2 n 

. T a n " 1 X 

L2n+2 

Proof: 

m • • , •: 2n L2n+2 1 
Tan (.0 + ip ) = j — y - —£: = p 

zn zn+Z J j2nJj2n+2 X 2n+l 
s ince 

L 2 n + 2 + L 2 n = 5 F 2 n + l a n d L 2 n L 2 n + 2 " X = 5 F 2 i » l 

by Lemma 1 above. 
Theorem 4: If tan 6>n •= 1 / F n f then Tan (<92n - ^ 2 n + 2 ) .'= 1 /?2n+v 

or 
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T a n " 1 ^ X = T a n " 1 -^- - T a n " 1 X 

F 2n+1 F 2 n F2n+2 

Proof: F _ p 

T te - e \ 2 n + 2 2 n = i 
T a n < 2 n " 2n+2> " F ^ F ^ + 1 ~ F 2 n + 1 

s ince 

F Q ^o " F o = F o , t a n d F 0 F 0 | 0 - F 2
0 l 1 = ( ~ l ) 2 n + 1 

2n+2 2n 2n+l 2n 2n+2 2n+l v ' 

F r o m Theorem 4, 

M M 

Tan 
n = l «"•-«. n_-^ 

M x 

^ - Y T a n " 1 J - - T a n " 1 ^ 
x 2 n + l ^ \ r 2 n *2n+2 / 

rV "I 1 rp " I 1 
= Tan •=- - Tan 2 *2M+2 

Since M_^00 Tan •= = 0 by continuity of Tan x at x = 0 we may 
.. 2M+2 

wr i te 
Theorem 5: 

t-J x 9n4 
n ^ 
4 = T a n 

^ A2n+1 
n=l 

This i s the ce lebra ted r e s u l t of D. H. Lehmer , Nov. 1936, Amer ican Mathe-

mat ica l Monthly, p . 632, P r o b l e m 3801. 

We note in pass ing that the par t ia l s u m s 

M 

S _ = > Tan •••—-— = T a n " 1 4 ~ - Tan X X 

M / , F F F 
iVi ^ r 2 n + l 2 r 2 M + 2 

n=l 
a r e all bounded above by Tan 1 = n / 4 and S i s monotone,, Thus Theorem 

1 can be applied,, F r o m Theorem 3, 

M M 

J T a n " 1 ^ J L - = J (Tan" 1 - ^ + T a n " 1 ^ ) 
H . *2n+l ^ \ H n S t i + 2 / 

n=l n=l 
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so that 

M M 
) Tan"1 -=r^ + Tan"1 | = 2 ^ Tan*1 ~ + Tan"1 X 

H. 2n+l 6 H, - 2 n ^2M+2 
n=l n=l 

-1 - I -1 
The limit on the left tends to Tan 1 + Tan 1/3 = Tan 2 and the right-hand -1 side tends to this same limit and since Tan 1 / L ? M 9 -*09 then 

Theorem 6: 

I rp - 1 1 ^ - 1 ^ 5 " 1 1 „, ' - 1 „ 
Tan T — = Tan —-75-— = •$ Tan 2 

n=l 2 n 

Compare with Theorem 5 in Part IV, 
We shall continue this interesting discussion in the next issue. 

CORRECTIONS FOR VOLUME 1, NO. 2 

Page 45: In the tenth line up from the bottom, the subscripts on the Fibonacci 
numbers should be reversed. 

Page 47: Replace "Lamda" by "Lambda" in the title. 

Page 52: In line 6, replace (Rn) with \(Rn), 
In line 12, the author's name is Jekuthiel Ginsburg. 

Page 55: In problem H-18, part a, replace = by 4= . 

a b .,, / a b Page 57: In E2, replace — , — with , , , , , . 

Page 58: Add three dots after the 4 on the last line. 

Page 60: The title "Letters to the Editor" was omitted from Fibonacci Formu-
las , and, in that article, the "Correct Formula" due to the late Jekuthiel 
Ginsburg is I * + 2 - 3J#n + 1*_2 = 3 F 3 n . 


