STRENGTHENED INEQUALITIES
FOR FIBOMACCHI AND LUCAS MUMBERS

DOV JARDEN
Jerusalem, israel
In a paper entitled "On the Greatest Primitive Divisors of Fibonacci and
Lucas Numbers" (henceforth referred to as P), published in The Fibonacci
Quarterly, Volume 1, Number 3, pages 15 — 20, I have proved for the Fib-

onacei numbers F11 and the Lucas numbers Ln the following inequalities:
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The aim of this note is to strengthen (4), {5), and (4*) as follows:
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For the proof of (A), (B) we shall use the well-known formulae
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as well as the following inequalities:
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Proof of (E) (by induction). (E) is equivalent to
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(E') is validfor n = 3. If (E') is valid for n, then:
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Proof of (F), (G) (by induction on n and n + 1).
(F) is valid for n = 2,3, since
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(G) may be proven analogously, noting that, by arguments employedin the
proof of (F), (G) is valid for n = 2,3, since
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Proof of (A).
(1) For n = 2 we have, by (C):
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(2) For n = 3 we have, by arguments employed in the proof of (F),
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Hence, by (C), (E):
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Proof of (B). For n = 2 we have (o -1)/(n - 1) = L2,

+1=205t=@- l)X—l, whence: n* -1 = (n- 1), Hence, by (D), (G), and
noting that (by arguments employed in the proof of (A), part (2)) —a/“nX+1 > .1
we have:
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Remark. In proving the inequalities (A), (B), I was assisted by my son,
Moshe, who also noted that (B) cannot be strengthened, analogously to (A), to:

L > L™ Indeed, for n = 4, x = 1, we have: L, = 2207 < 2401 = 74
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It may also easily be seen, by (C), (D), that
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which shows that, for any given n = 2, there exists an X such that, for any

n n-1
x > X, FnX+1 > nI‘nX . Lnx+1 > Lnx .

By means of (A), (B), and employing the same reasoning as in the proof
of (3), (3% in P, we have, for the greatest primitive divisors FI'l of Fn and

L;l of Ln , the following generalized inequalities:
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SOME CORRECTIONS TC VOLUME 1, NO. 3

Page 16: In Equation (4*), replace n =2 by n > 2,
The last line should read:

...for any positive integer n =2, n > 2, respectively.

Page 17: Online 6, add > to read:

_1+N5  1+N4 _ 3
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Line 8, Equation (7), should be corrected to read:




