$k=F_{n+1}$, we have that $k+1=F_{n+1}+F_{2}$, and we are through. If $k=F_{n+1}-1$, we have $k+1=F_{n+1}$ and we are through. If $k=F_{n+1}-2$ we have $k+1=F_{n+1}-1$, which by Lemmal (A or B), can be represented as claimed and we are through again. Therefore let us consider $k \leq F_{n+1}-3$.

Now the representation for k in this form can best be expressed as $k=F_{n}+a_{n-2} F_{n-2}+a_{n-3} F_{n-3}+a_{n-4} F_{n-4}+\ldots+a_{3} F_{3}+a_{2} F_{2}$ where $a_{i}=0$ or 1 for $2 \leq i \leq n-2$, and $a_{i}=1$, implies that $a_{i} \pm 1=0$. Now there are only two possibilities for a_{2} and a_{3} in this representation. Either $a_{2}=a_{3}=0$, or $a_{2} \neq a_{3}$. If the first case is true for k, we can represent $k+1$ in the required menner, simply by adding 1 to k in the form of $a_{2}=1$. If the second case is true for k, we then claim that there exists at least one place in the representation where $a_{i}=$ $a_{i+1}=0$, since otherwise, $k=F_{n+1}-1$ which we have already taken care of above.

Therefore we can represent $k+1$ by the following:
$k+1=F_{n}+a_{n-2} F_{n-2}+\ldots+a_{i+2} F_{i+2}+a_{i-1} F_{i-1}+\ldots+a_{3} F_{3}+a_{2} F_{2}+1$ Now consider the expression from $a_{i+2} F_{i+2}$ on and the resulting inequality.
$a_{i+2} F_{i+2}+a_{i-1} F_{i-1}+\ldots+a_{3} F_{3}+a_{2} F_{2}+1 \leq F_{i+3}-1 \leq F_{n-1}-1$,
by our Inductive Assumption. Also by the Inductive Assumption, we can represent the expression from $a_{i+2} F_{i+2}$ on in the proper form which implies that we can then alsorepresent $k+1$ in the proper form. This shows that the proof holds for all positive integers N. Q.E.D.

Phil Lafer, Oak Harbor, Ohio

