Then

If

$$
a=\frac{1}{2}(1+\sqrt{5}), \quad b=\frac{1}{2}(1-\sqrt{5}), \text { then } \frac{a^{r}-b^{r}}{a-b}=F_{r},
$$

the Fibonacci number. In that case,

$$
S_{n}\left(r, \frac{1}{2}(1+\sqrt{5}), \quad \frac{1}{2}(1-\sqrt{5})\right)=F_{r}^{n}
$$

Also solved by the proposer.

XXXXXXXXXXXXXXX

A DIGIT MUSES**.......
Oh!
4
2B
No zero
In the world of math!
Would that I were like that great
Built into the structure of the universe and art
The ideal of ideals dividing all things in proportions of gold - a paragon!
Brother U. Alfred
*This poem has the distinction that the number of syllables in each line proceeds by the sequence: $1,1,2,3,5,8,13,21$.

