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1. INTRODUCTION

The subject theorem, due to E. Zeckendorf[l], is'one which de-
serves to be more widely known, particiularly since the property in-
volved in the theorem statement is a property which uniquely charac-
terizes the Fibonacci numbers among all other sequences of positive
integers. Our purpose in this paper is to give a brief exposition of
theorem with its proof, and to examine several applications and con-
sequences.

For the subsequent proof, ‘it is convenient to define the Fibonacci
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Zeckendorf's theorem essentially states that every positive

iv "™

integer can be represented uniquely as a finite sum of distinct Fib-
onacci numbers %ung , withthe additional constraint that no two con-
secutive Fibonacci numbers appear in the representation of any par-
ticular integer. A formal statement of the theorem and its proof fol-
low in section 2, while section 3 is concerned with applications and
a converse.

2. ZECKENDORF'S THEOREM

Theorem: Every positiveinteger N has one and only one represen-

tation in the form

oo
(1) N = 3 @,
1
where each a; is a binary digit and
(2) aiai+l = 0 for 1_> 1.
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(In the following, we shall reserve the subscripted variables o
and g for binary digits, thatis, digits which have either the value
zero or unit, ) '

The proof is accomplished with the aid of two lemmas:

Lemma 1: u = 1 +un-l +un_3+...+u1’2,
where ‘ u, if n is odd
1,2
u, if n is even.
2
Proof: The elementary inductive verification of this identity is left
to the reader.
Lemma 2: Representation of a positive integer in the form (1) with

binary coefficients satisfying (2) is unique.
Proof: Assume 3 a positiveinteger N withtwo distinct represen-

tations of the required form, so that

oo oo
(3) N = 3 aiui = 3 Biui
1 1
. - - - >
with oy = ﬁi ﬁi+1 = 0 for i 21, and

oL
> e -8l 72 0.
1

Let k be the largest integer i such that a; # ,Bi; then of the two
quantities @, and B> onemust be unity and the other zero. Assume

without loss of generality that a«, =1, Bk= 0, so that (3) becomes

k
k k-1
z = 2 .
(4) “% Buy
1 1
But the left-hand side is > u since oy = 1, while the right-hand side

tisfi
satisfies | |

Z B <u g tu gt tuy o = u -1,
1
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a contradiction. We conclude a, = Bi for all i> 1; that is, the
representation is unique.
Proof of Theorern:

It remains to be shown that every positive integer N has a
representation in the form (1) with binary coefficients satisfying (2).

We will prove, by arn induction on n, that 0 < N <u, implies

N = 2 @u, with a.a 0 for i21.
ii i

i+l

The statement is vacuuously true for n =1 and is verified by inspec-
tion for n=2 and n= 3. Now, assume the proposition has been
proved for n=1,2,...,k where k is some integer > 3; we wish to

show the statement mustnecessarily be true for n = k+l, or equiva-

lently, that 0 £ N < Ul implies
k
= i >
(5) N z au, (aiaiﬂ 0 for i21).

By the induction hypothesis, the result holds for N in the range

0 <N < u,., so that we need only consider the case u <N < LR
For this latter case,
0 S N-w <y =9 = U

and the induction hypothesis guarantees binary coefficient ﬂi such that

k-2
N-w = Z Bu. (Bg, =0 forixl).
1
Transposing the U, we obtain

k-2
N= 2 fBu +u
ii
1

k,

sothat the choices, @, = Bi for 1 £ 1 £k-2, @ = 0 and o, = 1,

vield a representation in the required form (5). q.e.d.
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3. APPLICATIONS AND A RELATED PROBLEM
As our first application, we analyse the problem[Z]of determin-
ing the grobability that at least two successive '"heads'' will occur in
n flips of a fair. coin., To investigate this problem, we consider the
complementary situation and ask for the number of ways in which a
coincanbetossed n times withoutever getting two heads in sequence.
Clearly, this number is equal to the number of distinct binary se-

uences (a., ., a_) of length n, where each . is either 1
q 1 n g 1

2
(heads) or 0 (tails), with the additional constraint that a 1 is never fol-
lowed immediately by another 1. This latter condition is concisely ex-

pressed by the requirement o a, =0 for i2> 1, which, of course,

i+l
is exactly the coefficient condition of the preceding section.
Let us term a sequence of n binary digits an ""admissible' se-

quence if it satisfies the constraint o a, =0 fori> 1; then, we

i+l
wish to determine, as a function of n, the number of admissible se-
quences. ‘

To eachadmissible sequence ("‘1’ Qpr e an), let us associate

the number

so that a one-to-one correspondence,

n

(al’ @y o+ an)<—>2 a.Q. ,

1

is established between admissible sequences (of length n) and a subset
of the positive integers. But, from the proof of Zeckendorf's theorem,

we have that each integer N satisfying 0 < N <u has one and

+1
only one representation in the form
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with a oy = 0 for i > 1, and clearly no integer >u 4] can be
represented in this form. Hence, the number of different integers
which can be represented is equalto the number of integers in the set

a 0,1,2,..., Ui -1 2 , Or u By our correspondence, the num-

n+l’

ber of admissible sequences of length n is thereforealso uog Since

the total number of binary sequences of length n is Zn, the prob-
ability of not obtaining at least two successive heads in n throws is
' u ) N
n+l

Zn

s

or, equivalently, the required probability of having at least two suc-
.cessive heads in n tosses is
Yn+l
Zn
A secondapplicationmay be found in Whinihan's recent paperB:|

1 -

on determining an optimum strategy for the game of Fibonacci Nim.
In developing the strategy, the author introduces a rule for repre-
senting an arbitrary integer as a unique sum of distinct Fibonacci
numbers, so that in the sequence of expansion coefficients, it is "im-
possible for two l's to appear...without at least one 0 separating
them. ' As noted in an editorial comment, this unique representation
property is precisely the content of the Zeckendorf theorem.

Lastly, we consider the unique representationpropertyin Zeck-
endorf's theorem andask What other integer’ sequences (if any), in ad-
ditionto the Fibonacci sequence, enjoythe same property. For clarity,
we define the property in question as follows:

Definition: A sequence of positive integers ivn Fo is said to possess

., the unique representation property (u.r.p.)if and only if every posi-

tive integer N has a unique representation in the form

. o0
(6) N = Z Otiui ,
1
where the @, are binary digits satisfying
(7) @ a g = 0 for 1> 1

The maintheorem concerning u.r.p. sequences is due to D. E.

Daykin 4
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Theorem (Daykin): If ivng is a sequence possessing the u.r.p.,
then v is necessarily increasing»and Vo for all n > 1.

Thus, the Fibonacci sequence is the only sequence, increasing
or otherwise, for which unique representations in the form (6)-(7) are
possible for every positive integer.

Daykin's theorem is easy to prove in the case of increasing Va
but is non-trivial for the general case in which the vn's may appear
in any order. The general result provides a complete converse to
Zeckendorf's theorem andalso gives a concise characterization of the
Fibonacci sequence as being the only sequence possessing the unique
representation property.

A different, though related, characterization of the Fibonacci
numbers in terms of ''complete'' sequences has been given earlier by
the author > . Any sequence possessingthe u.r.p. is, a fortiori, com-
plete; that is, every positive integer may be written as a sum of dis-
tinct members of the sequence. Moreover, it can be shown that the
deletion of any single term from a u. r.p. sequence renders the re-
maining sequence incomplete. The definition of completeness, unlike
that of the u. r.p., is invariant with respect to a reordering of the se-
quence and may provide an alternate method of proving Daykin's
theorem. The connectionbetween completeness and the unique repre-
sentation property will be the subject of a future paper.
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