where B(s,t) is given by (3.7), and ϕ and ψ are the differential operators

(5.3)
$$\phi = s \frac{\partial}{\partial s} , \quad \psi = t \frac{\partial}{\partial t}$$

I wish to thank Prof. Paul F. Byrd for his many helpful suggestions during the preparation of this article and the two previous ones.

REFERENCES

- J. A. Jeske, "Linear Recurrence Relations Part I," <u>The</u> Fibonacci Quarterly, Vol. 1, No. 2, pp. 69-74.
- 2.
- _____, "Linear Recurrence Relations Part II," <u>The</u> Fibonacci Quarterly, Vol. 1, No. 4, pp. 35-39.

ASSOCIATIVITY AND THE GOLDEN SECTION

H.W.GOULD

West Virginia University, Morgantown, West Virginia

E. T. Bell, A functional equation in arithmetic, Trans. Amer. Math. Soc., 39(1936), 341-344, gave a discussion of some matters suggested by the functional equation of associativity

 $\varphi(x, \varphi(y, z)) = \varphi(\varphi(x, y), z)$.

As a prelude, Bell noted the following theorem.

THEOREM 1. The only polynomial solutions of $\varphi(x, \varphi(y, z)) = \varphi(\varphi(x, y), z)$ in the domain of complex numbers are the unsymmetric solutions $\varphi(x, y) = x$, $\varphi(x, y) = y$, and the symmetric solution

$$\varphi(\mathbf{x},\mathbf{y}) = \mathbf{a} + \mathbf{b}(\mathbf{x} + \mathbf{y}) + \mathbf{c}\mathbf{x}\mathbf{y} ,$$

in which a, b, c, are any constants such that $b^2 - b - ac = 0$.

It is amusing to note a special case. The operation defined by

$$x * y = 1 + b(x + y) + xy$$

is associative only if $b = \frac{1}{2} (\pm \sqrt{5})$.
