FIBONACCI AND PASCAL

WALTER W. HORNER
Pittsburg, Pa.
The purpose of this note is to point out a connection between the Fibonacci sequence and rows of Pascal's triangle. It is known that

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}{ }^{n}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Expanding by the binomial theorem and collecting terms we get

$$
F_{n}=\frac{\binom{n}{1}+\binom{n}{3} 5+\binom{n}{5} 5^{2}+\binom{n}{7} 5^{3}+\binom{n}{9} 5^{4}+\cdots}{2^{n-1}}
$$

But

$$
2^{\mathrm{n}-1}=\binom{\mathrm{n}}{0}+\binom{\mathrm{n}}{2}+\binom{\mathrm{n}}{4}+\binom{\mathrm{n}}{6}+\binom{\mathrm{n}}{8}+\cdots
$$

Therefore

$$
F_{n}=\frac{\binom{n}{1}+\binom{n}{3} 5+\binom{n}{5} 5^{2}+\binom{n}{7} 5^{3}+\binom{n}{9} 5^{4}+\cdots}{\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\binom{n}{6}+\cdots}
$$

As for the Lucas sequence it is known that

$$
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Expanding as above and collecting terms and remembering that 2^{n-1} is also equal to $\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\binom{n}{7}+\binom{n}{9}+\cdots$ we get

$$
L_{n}=\frac{\binom{n}{0}+\binom{n}{2} 5+\binom{n}{4} 5^{2}+\binom{n}{6} 5^{3}+\binom{n}{8} 5^{4}+\cdots}{\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\binom{n}{7}+\binom{n}{9}+\cdots}
$$

Note the exchange of binomial coefficients in the two formulas. Numerical examples: To find F_{7} we look in row 7 of Pascal's Triangle and find

$$
\frac{7+35 \cdot 5+21 \cdot 5^{2}+1 \cdot 5^{3}}{1+21+35}=\frac{832}{64}=13
$$

Similarly for the 7 th Lucas number

$$
\frac{1+21 \cdot 5+35 \cdot 5^{2}+7 \cdot 5^{3}}{7+35+21}=\frac{1856}{64}=29
$$

