$$
\begin{aligned}
& U_{p} \equiv 5^{\frac{p-1}{2}} \equiv \epsilon_{p}(\bmod p) \\
& V_{p} \equiv 1 \quad(\bmod p)
\end{aligned}
$$

Hence $m=U_{2 p} \equiv \epsilon{ }_{p}(\bmod p)$ and, since $U_{2 p}$ is odd, $2 p$ divides $m-\epsilon_{p}$, hence $U_{2 p}$ divides $U_{m-\epsilon}$. It remains to show that $\epsilon_{\mathrm{m}}=\epsilon_{\mathrm{p}}$ or that $\mathrm{m} \equiv \mathrm{p}(\bmod 10)$. Taking (3) modulo 5 we have

$$
4^{\mathrm{p}-1} \mathrm{U}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}} \equiv(-1)^{\mathrm{p}-1} \mathrm{U}_{2 \mathrm{p}}=\mathrm{U}_{2 \mathrm{p}} \equiv \mathrm{p}(\bmod 5), \text { and }
$$

since $m=U_{2 p}$ and p are both odd $(p \neq 3)$ we have $m=p(\bmod 10)$ or $\epsilon_{p}=\epsilon_{m}$ and the result follows.

$X X X X X X X X X X X X X X X$

TWO VERY SPECIAL NUMBERS

J. A. H. HUNTER

Toronto, Ontario
Stimulated by my derivation of the two 17-digit automorphic numbers (Recreational Mathematics Magazine, No. 14), Mr. R. A. Fairbairn of Willowdale, Ontario, has derived the two.100-digit automorphics.

The labor involved in this tremendous task would deter most enthusiasts, since the results were achieved (and of course checked) using no help other than a simple desk adding machine.

An automorphic number is distinguished by having its square end with the number itself.

The two 100-digit automorphic numbers, never before published so far as I know, are:

$$
\begin{gathered}
3,953,007,319,108,169,802,938,509,890,062,166, \\
509,580,863,811,000,557,423,423,230,896,109, \\
004,106,619,977,392,256,259,918,212,890,625 \\
\text { and } \\
6,046,992,680,891,830,197,061,490,109,937,833, \\
490,419,136,1.88,999,442,576,576,769,103,890, \\
995,893,380,022,607,743,740,081,787,109,376
\end{gathered}
$$

