2. S. L. Basin and V. E. Hoggatt, "A Primer on the Fibonacci Sequence - Part II, " Fibonacci Quarterly, l(1963), No. 2, pp. 61-68.
3. Dov Jarden, Recurring Sequences, Riveon Lematematika, 1958, pp. 42-44.
Additional Reading
4. R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, 1960, pp. 228-2.29 (Kronecker Powers of Matrices.)
$X X X X X X X X X X X X X X X$

THE GOLDEN CUBOID

H. E. HUNTLEY

The problem of finding the dimensions of a cuboid (rectangular parallelopiped) of unit volume, having a diagonal 2 units in length leads to an interesting result.

Suppose the lengths of the edges are $\underline{a}, \underline{b}$ and \underline{c}. Then
$\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}=1$ and
(2) $\sqrt{\left(a^{2}+b^{2}+c^{2}\right)}=2$

If only the ratios of these lengths are required, we may, without loss of generality, write $\underline{b}=1$, provided that $\underline{a} \cdot \underline{c}$ can have the value unity and that $\underline{a}^{2}+\underline{c}^{2}=3$. Now it is evident from Fig. 1, which represents the base of the cuboid, that the maximum value of \underline{a}. occurs when $a=c=\sqrt{3 / 2}$, so that $\underline{a} \cdot \underline{c}$ may have any value from zero to $3 / 2$.

Fig. 1

Substituting $c=1 / a$ from (1) in (2), we have

$$
\begin{gathered}
a^{2}+\frac{1}{a^{2}}=3 \text { i.e., } a^{4}-3 a^{2}+1=0, \text { whence } \\
a^{2}=\frac{3+\sqrt{5}}{2}=1+\varphi=\varphi^{2}
\end{gathered}
$$

so that $a=\varphi$, the Golden Section. The positive solution of the equation $x^{2}-x-1=0$ and the value of u_{n} / u_{n-1} as $n \rightarrow \infty$, where u_{n} is a member of the Fibonacci Series.

From (1) it follows that $c=\varphi^{-1}$, so that the required ratios are $\mathrm{a}: \mathrm{b}: \mathrm{c}=\varphi: 1: \varphi^{-1}$. It is easily verified that $\varphi^{2}+1+\varphi^{-2}=4$.
Continued on page 240.

