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[ 1. INTRODUCTION
Kiefer ] has givena sequential method for seeking the maximum

of a unimodal (single-peaked) function of one variable in a finite in-
terval. This procedure is minimax in the sense that no matter where
the peak mayhappen tobe, the final interval within whichthe peak will
be known with certainty to lie will be as small as possible. In this
technique the last experiment must be located as closely as possible
to the experiment giving the greatest value among those previously
run. If this distance € is negligibly small, then Kiefer's procedure
is indeed minimax. When on the other hand ¢ cannot be neglected,
which is often the case in practical problems, then Kiefer's method
can be modified to give a shorter final interval of uncertainty.

Kiefer's original technique is asymmetric in the sense that the
last two experiments are not located symmetrically with respect to
each other. The modified procedure is symmetric, since it permits
the last experiment to be placed symmetrically with respect to the
most effective previous experiment. In the extreme case when as
many experiments as possibleare run, the symmetric technique gives
a finalinterval only two-thirds as long as for the asymmetric method.
Formulae are given for the maximum number of experiments which
can profitably be performed for a finite resolution €. Analysis of
them shows that the symmetric method can occasionally make use of
at most one more experiment than the asymmetric procedure.

Problem: Let y be a single-valued function of x having a
maximum y* at the unknown point x* somewhere in the interval
a < x <b. Suppose that in this interval y is unimodal, i.e., that
a _éxl <x, < x% implies y(xl) < y(xz), and x%* <X <X, <b im-
plies y(xl) > y(xz). If observations of y are taken at the k points
Xp <Xy <err o< Xy and if the greatest value of y 1is found at xj,
then the unimodality implies that Xj-l < X*¥ < Xj+1’ with the convention
*Currently at Stanford University, Stanford, California.
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that x =2 and X4y = b. Let

(1) X4 T %501 = Dy

the length of the interval of uncertainty after k observations (LO = Ll
= b-a). For k > 1, Lk will become smaller as more measurements

are taken, and we wish to locate themin such a waythat the length I_‘n
of the final interval of uncertainty after n sequential observations
will be as small as possible, no matter where x*% actually happens to
be. 'If 3Xn% represents any sequence of n observations, then the
minimax sequence %x‘r‘l 2 is the one which gives this smallest interval
Lﬂ Formally,

(2) B (e SFOLE

2. DISTINGUISHABILITY

Even when the function is known to be unimodal it may not be
possible to detect, in a physical problem, the difference between the
outcomes of two measurements that are too close together. When this
happens, the experimenter is unable to reduce the interval of uncer-
tainty, and one of the observations is useless. Thus in designinga
sequential search technique one must take into account the minimum
spacing € for whichtwo outcomes are distinguishable. The smallest

interval of uncertainty obtainable practically is therefore 2e.

(3) L =x, - X. = (x - x.) - (%, -x‘_l) = 2e.

it b
Although the resolution € is usually negligible compared to the ori-

ginal interval of uncertainty L it is often a large fraction of the final

interval Ln if the search is at all efficient.

3. RESULTS OBTAINED BY NEGLECTING RESOLUTION
1 . .
Kiefer[ ] has given a search procedure based on the Fibonacci
sequence (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...), where the nth

Fibonaccinumber is given by

(4) F =F =1; F =F +Fn_ for n=2,3,...
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One places the first two experiments at distances Lan—l/Fn from
one end of the original interval. By equations (1) and (4) the better
observation will be a distance Lan—3/Fn from one end of the new
interval of uncertainty, whose length will be L2 = Lan-Z/Fn' The
third observation is made symmetrically with respect to the one al-
ready in the interval, i.e., a distance Lan-3/Fn from the other
end. This procedureis continued until all but one experiment has been
1= LOFZ/Fnz ZLO/Fn.
The bestobservation will be exactly inthe center of this interval, be-

cause L F. /F =1 /F =1_ ./2. Thus if the final observation
o 1" n o' "n n-1

run and the interval ofuncertainty has length Ln

were placed symmetrically it would be completely indistinguishable
frorn the one already in the interval. It must therefore be located a
distance € to one side orthe other of the midpoint. For this reason

we shall call this asymmetric minimax method.

If the experimenter's luckis bad he will be left with an interval

of uncertainty of length

(5) Lx = LO/Fn+ €

sk
n

- The asterisk has been added to Ln because Kiefer has shown that
this interval is €-minimax among all non-randomized procedures.
If one randomizes the placement of the last experiment, the expected
final interval is slightly less
(6) E %Ln% = L F e/2
These results were obtained essentially by neglecting the resolution
and minimaxing the other term. Thus as € approaches zero Ln
approaches the true minimax length.
A SHORTER INTERVAL

By taking proper account of the resolution € we can obtain a
shorter interval of uncertainty L;ljl*. In establishing this result we
can avoid a long proof by usingan intermediate result of Johnson re-
ported in [3]. Johnson showed, in an independent alternate proof of
Kiefer's result, that the minimax procedure must be such that after k
trials, .

(6 ! ) Li:; E I S 1

5 f*y s k': 2,3,..., n
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Both Kiefer and Johnson have demonstrated that the final two experi-
ments should be a distance ¢ apart in the center of the remaining
interval, whose length is L;’fl_l. Our procedure will be called sym-
metric because it preserves this symmetry. With this spacing, the

final interval is

(7) Liok = Lik /2 + €/2

Equations (6 'yand(7) together give

Sk sk = ek 4 Sk = kol b SR o = KR -
(8) Lix, Ltk + Lk, Lk + (21 e) 3LAE -

By iterating the recursion relation (6) we obtain

(9 Lﬂf‘c"_* - :E‘n--k+lI"'x';='< - Fn-k-lE

which can be proven readily by mathematical induction on the indices.

When in particular k= 1, then

I"1 - FnL;TF - Fn-—Z'E

whence, since LO = L‘l'

(10) L;l" = Lb/Fn * Fn-Z e/Fn

This interval is shorter than that of the asymmetric technique by an

amount

(1) L# - Likx = (l—Fn_Z/Fn)e = Fn_le/Fn

As n becomes large, the ratio Fn-l/Fn approaches (J/5-1)/2 =
0.618033989. .. [l] ’ [Z] , [3], and so the resolution term in the

symmetric method is only about 38% as large as for the asymmetric

procedure.

4. PLACEMENT OF THE EXPERIMENTS
Although we have given the final interval obtainable by the sym-
_metric minimax method, we have not yet described how to locate the
experiments. The symmetric procedureis similar to the asymmetric
" one in that each new experiment is placed symmetrically with respect

to the observation already in the remaining interval of uncertainty.
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Hence the technique is completely defined when the location of the first
two experiments is specified. This is accomplished by noting that the
interval remaining after these two experiments will be L"é‘*, which is,

from equation (9),

(12) L=2==-= = Fn-lL;ﬁf‘c - Fn_3€

Equations (10) and (12) together give this length in terms of LO.

(13) Ly = [Fn_lLo t(F,_,F, |- FnFn_3)e] /Fn

The coefficient of e can be rearranged

F -FF _=(F_,+F_ _)F

n-ZFn-l n n-3 n-2 n-3 - (F +F )F =

n-2 n-1 n-2

(14)

Fn—Z - Fn—an--3

so that it can be simplified by a result of Simson[3] [4]
(15) F - F Fo.3= (-1)

- Equations (13), (14), and (15) together give the optimal placement of
the first two experiments

ale ots — n
(16) Lgx = FnﬁlLo/FnJr(-l) e/Fn

Thus for an odd number of experiments the first pairis slightly closer
together than for anasymmetric search. Conversely when n' is even

they are slightly farther apart.

5. MAXIMUM NUMBER OF EXPERIMENTS
The need for distinguishabilityputs an upper bound on the num-
ber of experiments that can be performed profitably. Let m be this
maximum number for a symmetric search. Equations (3) and (10) to-

gether give

L = Lo/Fm tF o, /Fm__>_ 2¢,

from which one can show that

(17) | F < Lo/é <F_

m+l — +2
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Thus if € is only one percent of Lo’ there is no advantage in per-

forming more thannine experiments because 89=F <100 < F1 1= 144,

. 10
When n is large, Lucas' relation [3] gives approximately

m +2/ ‘,"2_:)-*,

F_ % (1.618)

which can be used to obtain, from equation (17),

(18) m < 4.785 log (L_/¢€) - 0.328

For an asymmetric search the final observation, which is a dis-
tance ¢ frqm the center, can be no closer than € to the end of the
interval. Hence the final asymmetric interval Ln can be no shorter

than 3¢
sk 2
(19) L% 2 3¢,

which is 50% longer than the limit on L;I;* for symmetric search.
Equations (5) and (19) together give a limit on the number m' of asym-~

metric experiments that can be performed.

(20) F o, sL /2e¢<F .
When LO = 100e, m' = 8, one less experiment than for symmetric
search.

It is not always possible for the symmetric search to employ
more experiments than the asymmetric scheme (when Lo = 12,
m = m' = 4). Moreover, the difference will never be more than one
experiment, as can be seen by combining the equalities (17) and (20)

with the definition (4) of the Fibonacci sequence.

L
— % -
ZFm-l < Fm + F1'n~l B Ferl S < ZFm'-l—l ’
whence
F_ | <F_ i
or
F <F_,
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It follows that

(21) m-m' <1
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