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It is known [5] that anecessary and sufficient condition for p to

be prime is that for every natural number n

(1) <:>=[§] (mod p) ,

where [x] denotes the greatest integer less than or equal to x.

Indeed this result is equivalent to the congruence

(1 - x)k = 1- xk (mod p)

as is evident from the generating functions

® /n
2) s < >x“‘k = 1= k] <
k
n=k

and

X rnq n-k -1 k-1 |
(3) E[E]x = (1-x"(1-x97, Ix|l<1

n=k

These results and some extensions of (1) in a recent paper [2 ]
suggest that there is more than a casual relation between the binomial
coefficients and the bracket function. In the present paper this rela-
tion is made evident by exhibiting an expansion of the binomial coef-
ficients in terms of the bracket function, and conversely. These ex-
pansions give congruences equivalent to (1), and the expansions are a
special case ofa generalinversion theorem. In the course of the anal-
ysis we obtainnovel results concerning the compositions (ordered par-
titions) of a natural number into relatively prime summands. Expan-

sions involving unordered partitions are also developed.

*Research supported by National Science Foundation Grant GP-482.
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The compositions (Zergliederungen) of n intopositive summands

are given as the solution of the Diophantine equation

= 2
(4) ay +a2+... +ak n, (ai 1)
whereas the partitions (Zerfallungen) of n into positive summands

are given by the same equation together with the restriction that
< <
1< a; Sa, $...% a
Thus the compositions of 4 into positive summands in all are:
4; 3+1; 1+3; 2+42; 2+1+1; 1+2+1; 1+1+2; 1+1+1+41
The partitions are: 4; 143; 2+42; 1+1+2; 1+1+1+1
Catalan [3], [4], [6 ,Vol. 2, 114, 126] proved in 1838 thatthe

equation

(5) a, +a, +... ta_ = n, (ai—>-0) -

. 1 2 k
ntk-1

has ( k-1 ) solutions. He then observed in 1868 that equation (4)

has (E:b solutions. In factthis follows by addingl to each summand
in (5). A direct proof of the enumeration is not difficult. Indeed (Cf.
Bachmann [1, Vol. 2, 105-7:] ; MacMahon [8, Vol. 1, 150—1] ; Riordan
[10, 124]) if Ck(n) be the number of compositions of n into k pos-

itive summands, then

(x+ x> +x0 +..)F = ;’ Ck(n)xn
n=k
_ <X>k _ @ <n—l> Xn
= =) 7 = ,
n=k k-1

from whichthe resultis evident. P. Paoli [6, Vol. 2, 107] anticipated
Catalan in 1780.

We may state this basic result in the enumerative form

n-1
(6) C, (n) = = 1
k <k-1> 2 )
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The simple identity

R

now allow us to infer that

n . n
(7) (k> = b C. = 5 s 1
j=k j=k a1+...+ak:3

a.21
1

With this expansion we are now in a position to assert

Theorem 1.

n no_
8 = [.- 1
(8) . s 7] s
=k ap te... a =1
(al, ceas ak) =1
Proof. The expansion is evident from (7). Whenwe restrict the solu-
tions of the equation aq + a, +... 4 ay = j tothose whichare relatively

prime, it is evident that we may restore the equality by counting how
many multiples of j there are, less than or equal to n, and this is
precisely the meaning of [n/j].

A simple example will illustrate. On the one hand, by (7)

10 10
= 3 s 1 = 14346+10+15+21+28+36 = 120
3 i=3 a,ta,ta, = j
J 1732733 7]
a. 21
i

However, not all the partitions of j are formed by relatively prime
integers. Thesecasesareb6=2+2+2;8=2+2+4=2+4+2=4+2
+2; 9 = 3+3+3;.10 =2+2+6=2+6+2=6+2+2=2+4+4=4
+2+4=44+4+ 2. Removing the common factors, we could just as

well have written such solutions in the forms 3 =1 +1 + 1; =1+1
+2=14+42+1=2+1+1;3=1+1+1;5=1+4+1+3=1+3+1=3+1
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+1=1+2+2=2+1+2=2+2+1, provided that we regroup and

count multiplicities. This gives

10
( >= 3(1) + 2(3) +2(6) + (10 - 1) + 15 + (21 - 3) + (28 - 1) + (36 - 6),
3

or

—
o

10
()= = -
a1+a2+a3 =]
(al, as; a3) =1
We shall obtain expansion (8) by an entirely different approach
later in this paper.
For the sake of completeness we wish to show that Theorem 1 is

equivalent to the following result due to J. Schr’o’der[ll]. Schroder

proved the following Theorem 2.

n
a n
(9 <k>_ 3 _ [a1+a2+...+ak]'
(al,az, . ,ak) =1

1< a, _f n-k+1

As far as the writer has been able to determine, this is one of
the very few expansions in the literature of the sort under discussion.
Schriéder proved the formula by an enumerationin k-dimensional space
and an induction from k to k + 1. As for the equivalence of (9) and

(8), we have

n _ 2 n 1
3 [al + .. +ak]_ < . < k+j-1 3
(a<l,...<, ak) =1 1= j 2n-ktl a1+...+ak=k+_]-l
15 a; = n-k+1 (al,...,ak)=1
1S j-ktl S n-ktl9-a . Utay =
(al, oo ak)-—-l

which is our relation (8) and the steps are reversible.
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In view of Schrdder's approach, it is of interest to make some
remarks here about lattice points. By a lattice point in k-space is
meant a point (al, 3yt ak) where the coordinates a; are inte-
gers. If we view space from the origin (0, ..., 0) and assume that
the presence of a point may block our view of points further out along
the same ray, then we may speak of visible lattice points. In order for
a point to be a visible lattice point it is necessary and sufficient that
(al, Ay - a.k) = 1. Thus we may state the theorem of Schrdder in
the form of

Theorem 3. Let Vj(k) = the number of visible lattice points in k-space,

seen from the origin, and lying on the hyperplane ap ta, ... ta
=j+k-1. Then
n-k+1
n n
(10) ( > V0 [y ]
k .
=1

Thus, in 2-space,

n n-1 )
<2>= z Vi@ lgr]

j=1

where V.(2) isthe number of visible lattice points lying entirely within
the first Jquadra.n‘c and on the line x +y =j +1. The successive values
of V.(2)(j=1, 2, ...) here are 1, 2, 2, 4, 2, 6, 4, 6, 4, 10,

and \i/e always have in this case VJ.(Z) < j, since the line segment in
question has just this many lattice points in all.

In general we evidently have the estimate

jtk-2
(11) V.(k) <
J k-1

As other examples of Theorem 1 we have
SREE RN R C L
<:>= [%]+ 4[%]+ 10[%]+ 20 [;] + 34 [§]+ 56[g]+ o
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Since the equation ay + a, + ...+ ay = k, (ai > 1), has the sole
solution 1 +1 +... +1 =k, we have from Theorem 1 the (equivalent)

Corollary 1.

n
w2 )-B- = [Fae

j=k+1

where the number-theoretic function Rk(j) is defined by

(13) R, () = s R

and is the number of compositions of j into k relatively prime pos-

itive summands.

In order to relate our expansion to congruence (1) we shall now
study the arithmetic nature of the function Rk(j).
First of all, it is easy to use (2), (8), and (3) in order to develop

a generating function for R, (j). Indeed we have
g g kY

Xk ® n n @ n i n .
w3 (07 5 s e

|

n=k n=k j=k
W o
n

-5 om0 3 [
j=k n=j

@ . Xj
- s RG) ——r
S O maa-d)

and the lower summationindex may be changed to j =1 since Rk(j) =
0 if j < k. Thus we have established

Theorem 4. The number-theoretic function R'k(j) is the coefficient

in the Lambert series
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or, equivalently,

(15) s -
1 - x
= j=k

It may be of interest to compare this result with the Lambert
series for the Fuler totient function (Cf. Knopp [7, 466-7]):
28] . x) _ x
=1 1 - x (1 - x)

(16)

Now [7, 466—7] it is known that the Lambert series

n
@ x _ n
a = A x
S no, o n s n
n=1 n=1
is equivalent to the relation
An = 2 ad )
d !n
and so we have from (15) that
(I7) Ck(n) = 3 R(d)
d ln

We invert this expansion by the Mobius inversion theorem and so find
The number of compositions (ordered partitions) of the

Theorem 5.
integer n into k relatively prime positive summands is given by

d-1
(18) Ry(m) = 3 C(dpun/d = 3 < > # (n/d)
d'n d!n k-1

Therefore we also have Theorem 1 in the equivalent form:
Theorem 6.

(19)
alj

n n N d-1 _
<k> = 2 [j—] s <k ] 1>u<3/d)
j=k

We have presented what seems a natural wayto arrive at relation
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(19), but we now give a very short derivation on the basis of a famous
formula of E. Meissel. First of all we note the general lemma
(20) 20X fa,j) = X T £

jsx di_] dSXjSX

dl;
= 3 > £(d, md)
d<x m <€ x/d
valid for any number-theoretic function £(d, j).
Meissel (1850 [6, Vol. 1, 441] proved that for all real x 21

(21) 2 [Z]km) =1

m < x

Thus we have

3 [?—‘]z< >#(J‘/d)
1SijJ alj M-

- s <d_1> S

d $x k-1 me/d
- d-1 :<[X]
a<x k-1 k

and this gives us (more generally than Theorem 6)

Theorem 7. For any real x 2 1, and natural numbers k 2 i,
(%] d-1

(22) = 3 [;—‘] s i (G/d)
k 1< <x aly \k-1

The arithmetical nature of Rk(n) is of interestand in view of (12)
the congruence (1) is evidently equivalent to

Theorem 8. The congruence

(23) R

is true for all natural numbers n 2 k +1 if and only if k is prime.
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Our proof will depend on some elementary results about the bi-
i
nomial coefficients and the Mobius function.

Now

1, n=1
(24) % wu(d) ={
dln 0, n>1

Therefore, if p is anyprime whichdivides eachdivisor d of n, then

1, m =1,
p(n/d) = 2 wlpm/pd") = 3 p(m/d")

p’d,dln pd'lpm dl[m 10, m > 1,

or therefore

g 1, n=p
(25) s #(n/d)

p’d,dln )_O,n>p
NOW it is familiar that
-1\ (0 (modp), pla ,

(26)
p-1 11 (modp), pld,

and so we have
q4 -1 0 (mod p), for p*d, d’n, i.e. p]/n )
s #(n/d) =< S p(n/d), for pld, d|n, i.e. pln
d’n p-l ld,n

Thus in any case (p ’n or p)fn) we have by this and (25) that

27 s (n/d) = 0 (mod p)

for all integers n 2 p + 1 if p is a prime.

As for the converse, suppose that Rk(n) = 0 {(mod k) for all

nZk+1. Then, in virtue of (17) we should have
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(1 (modk), n 2k +1, if k|n ,
C, (n) =<
k lo (modk), n2k+1, if kfn ,

or, equivalently,

n-1

"

(2] - [nl; 1] (mod k) forall n 2k +1

k-1

Summing both sides from n=k+1 to n=m we should then have

m
-1 = =1 . >k +
<k> = [k] 1 (modk) forall m2k+1 ,

or that is
m
<k>

But this can happenonly when k = primeas we know from our original

[%] (mod k) for all m > k +1

congruence (1) for which a separate proof is known.
As a matter of fact then, congruence (23) isa simple consequence
of (1).
Table of Values of Rk(n)

1 3 4 5 6 7 8 9 10 11 12 13..... n
111 0 ¢ 0 O 0 G 0 0 0 0 0 0
2 1 2 2 4 2 6 4 6 4 10 4 12
3 1 3 6 9 15 18 27 30 45 42 66
4 1 4 10 20 34 56 80 120 154 220
5 1 5 15 35 70 125 210 325 495
6 1 6 21 56 126 252 461 1792
7 1 7 28 84 210 462 924
8 1 8 36 120 330 792
9 1 9 45 165 495

10 1 10 55 220
11 1 11 66
12 1 12
13 1
k
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The numbers Rk(n) form an interesting modification of the fa-

miliar Pascal array. Wehave from (18)the modified binomial theorem

relation

n
(28) s R s s /!
k=1 dln

In particular, when x =1 this sum represents the total number
of compositions of n into relatively prime summands. These values,
1, 1, 3, 6, 15, 27, 63, 120, 252, 495, 1023, 2010, 4095, ... afford
a check of the table.

We note a few special values of Rk(n):

s s-1
s p -1 P -1
(29) Rk(P ) = - , s 21, p=prime,
k-1 k-1
pq - 1 p-1 q-1 0
(30) Rk(PCI)z - - + , P,q primes,
k-1 k-1 k-1 k-1
2 2
2 paqg-1 pq -1 p -1 p-1
(31) R, (p7q) = - - + ,
k-1 k-1 k-1 k-1

with similar formulas for other cases. The expansion always contains
as even number of binomial coefficients when n 2 2 since Rl(n) =0
for n 2 2.

It is of interest to translate (18) into terms of Dirichlet series.
It is easily shown that the formal relation involves Riemann's Zeta

function and is

w - 00
(32) 3 Cmn® ={(s) T Rmn®

n=1 n=1

and this also follows from (17).
Having found the expansion (19) ofa binomial coefficient in terms

of the bracket function, it is natural to look for an inverse expansion.
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Put
n
n n
[E] p3 <.> A4,.0)
j=k Y
Then n n n
RIS L ALY P I SN TR Pt A <J>
j=k j [k] r=k & jer i/ \r
= Ak(n) ,

since the inner summation is merely a well-known Kronecker delta.
Thus an expansion inverse to (19) is given by

Theorem 9.

B s () = e (O

k VY d=k

Since Ak(k) =1 we have an analogy to (12)
Corollary 2.

n
n n o .
(34) (2] - <k> =z () ALG)
j=k+1
where
Jj .
o j-d (I\ ra
(35) A = s D (d) HE

d=k

For Ak(j) we next develop an expansioninverse to (14). Indeed,
we have from (35), (2), and (3)

3 a0 () :
j=k

"
[o}
IR =]
n
—
fo}
—
b e
—
8
S
.
N———
~~
"l
[
Nailg
| S

1
o
1
L)
M3
—
faglen
| S—
»
A
I
%
.
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It is evident from (35) that Ak(j) =0 for j <k, so we have

Theorem 10. The expansion inverse to (14) is
j k
o . X b d
(36) > A (T‘;z) = —x -
=1 1-x

Now it is evident that (14) and (36) implya pair of orthogonal re-
lations involving the functions Rk(j) and Ak(j). By a routine calcula-
tion we find upon substitution of the one expansion into the other that
we have

Theorem 11. The numbers Rk(j) and Ak(j) satisfythe orthogonality

relations
n

(37) s R A =5
j=k

and
n

(38) 3 Ak(j)Rj(n) = 82
=k

Thus we have also established a general inversion theorem, of

which (19) and (33) are special cases. We have

Theorem 12. For any two sequences f(n, k), g(n, k)
n

(39) fln, k) = 3 g R ()
j=k

if and only if
n

(40) gln,k) = 5 f(n,J)A0)
j=k

where Rk(j) is given by (18) and Ak(j) by (35).

Analternative form of (35) is easily gotten by way of the recurrence

-G
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Indeed we find that
n .
. [n-1 5 . .
- n-j TJ j-1
Agm) =3 (1) ( > I[E] - 3 }
=k -t

but [j/K] - [G-1)/k] =1 or 0 accordingly as k|j or kfj, whence

Theorem 13.

. n-l n_l
(41) A (n) = s (_l)n-.]< >= s (_l)n—mk< >
k< j <n U0 1< m S mk-1

klj
Table of Values of Ak(n)
1 2 3 4 5 6 7 8 9 10 11 12 13..n

1 1 0 0 0 o0 O 0 0 0 0 0 0 0
2 1 -2 4 -8 16 -32 64-128 256 -512 1024 -2048
3 1 -3 6 -9 9 0 -27 8l -162 243 -243
4 1 -4 10 -20 36 -64 120 -240 496 -952
5 1 -5 15 -35 70 -125 200 -255 275
6 1 -6 21 -56 126 -252 463 -804
7 1 -7 28 -84 210 -462 924
8 1 -8 36 -120 330 -792
9 1 -9 45 -165 495
10 1 -10 55 -220
11 1 -11 66
12 1 -12
13 1
K

The numbers Ak(n) alsoform an interesting modification of the

Pascal array, and the companion to (28) is
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n n

]

k-1 n-j (" j k-1

(42) ToAmx T = I <> 3 [JE] x
k=1 j=1 I/ k=1

When x =1 we recall that
j
k=1 k=1 alx

and so we have

n n . n J
An) = X <-1)n'3(_> T (k)
k=1 j=1 I/ k=1
n n ) n
= X 7k I (_1)n'3< >
k=1 j=k J
n n-1
- 3 <—1)“‘k< > 7 (k)
- k-1
n-1 n-1
- 3 (-1)n‘1‘k< > r (k+1)
k=0 k

This result is easily inverted, and we may state these formulas as

Theorem 14. For allintegers n 20, and 7 (k) = number of divisors
of &,
n+l n
n-k (" n
(43) 3 A.(ntl) = X (-1) r(k+l) = A r(x)
=1 k=0 k x, 1 x=1

and inversely

n
(44) T(ntl) = 2() b Aj(k+1)
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The first few values of the sum (43) are 1, 1, -1, 2, -5, 13, -33,
80, -184, 402, -840, ... For example, we have the following differ-

ence table:

1 2 2 3 2 4 ... r(n)
1 o 1 -1 2
-1 ) 3
2 -3 5
-5 8
13

The arithmetical nature of Ak(n) is of interest. In view of (34)
and (1) we evidently have a result analogous to (23). In fact we have

Theorem 15. The congruence

(45) A (n) = 0 (mod k)

is true for all natural numbers n 2 k + 1 if and only if k is prime.

Indeed this congruence follows easily from (1) since we have

n .
am = s () [E]

j=k )
o .. n J (mod k) for all n 2k
=z D if and only if k = prime,
- j k
j=k
n
=8, = 0 (modk) forall n2k+1.

We should like next to return to relation (28) and give another

congruence involving Rk(n). It is known [6, Vol. 1, 84-86] that

(46) 2@ a™d - o (mod n)
dln
for all integers a 2 1. In fact Gegenbauer showed that
Ef(d)an/d—O( d n) wh £(d) = 0 (mod n)
d‘vn = mod n) whenever d]n = mod n).

Gauss proved (46) when a = prime. Thus we have from (28) that

z k-1
(47) a ¥ R, (n)(a-1)""" = 0(modn), (a 21, n 21)
k=1 K
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and in particular this holds for a = 2. Thus the numbers 2, 2, 6, 12,
30, 54, 126, 240, 504, 990, 2046, 4020, 8190, ... are, respectively,
divisible by 1, 2, 3, 4, 5, ... therebyaffording a check of the column
sums in the table of values of Rk(n) given previously.

It should be remarked thatany formula, suchas (18), which gives
the number of compositions of n into k relatively prime positive sum-
mands also solves the problem of counting how many compositions are
possible when the summands have greatest common divisor g; for

clearly if Rk(n, g) 1is this number, then

0, g}“n,

(48) R, (n,g) = z 1 = z L= Rk(n/g),g\n.

a t...fa =n b, +. ..+bk:n/g
(@p---ha) =g (bys-enbp)=1

Thus far we have restricted out attention to compositions. It
may therefore be of some interest to consider the possibility of expan-
sion ofa binomial coefficient interms of bracket functions and partitions.
Let

(49) p(n, k) = 3 1
1<b b. < ... €b_ <n
by

IN

2 k

1
+b2+... +bk = n

so that p(n, k) is the number of partitions of n into k positive sum-

mands. Consider a typical partition n = b1 +..00 1 bk' If 1 occurs

a; times, 2 occurs a, times, etc., then it is well known (e.g. Cf.

[1, Vol. 2, IOZ]) that we may restate (49) in the form

(50) p(n, k) = z 1
a1+2a2+3a3+... nan

+
= >
1+a2+...+a.n k, ai_O

n

1l

a

We recall that if we form an arrangement of k marks (CICZCI
c4c3...), where c., occurs a times, c¢., occurs a., times, étc.,

1 1 2 2
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with k = a) ... + a, a > 0, then the total number of distinct such
arrangements (permutations) which may be formed is enumerated by

the expression

This expression then enumerates the compositions of n into k
positive summands corresponding to a givenpartition n = bl + bZ +...
+ bk' It follows from this that we may change relation (50) into an enum-
eration of compositions by introducing the above ratio of factorials (in-

stead of just counting 1 for each partition). Thus we evidently have

proved
Theorem 16. For all natural numbers n and k
n-1 '
(51) - s — k. _
k-1 B RETLEEEEN
a1+2a2+3a3+...+nan~n
a, ta,+... ta =k, a, 20
1 2 n i

Again we may argue as we did in going from (6) to (7), whence

we have established

Theorem 17.
n n
1
(52) 2’ z S —
Kk _ . _ al.az....aj.
j=k al+2a2+3a3+... +Jaj—_]
= >
a1+a.2+... +a‘j k, ai_O

We may nextapply the same argument here which we used to ob-
tain Theorem 1, which is to say that we may restrict our attention to
relatively prime summands, but have the same total enumeration of
compositions, by introducing the bracket function. We evidently have
Theorem 18.

n
63 ()= T[2] 3 —
Kk 4 ) . _.al'aZ""aj'
j=k a1+242+3a3+...+3aj—3
a1+a2+.. +aj:k
@ gy eer 3=l
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It follows that the inner sum gives another way of expressing

Rk(j), that is, we conclude that

(54) Rk(n) = b3 m ,
a1+2a2+3a3+...+nan:n n
a1+a2+... +an=k
(al, @ tees an)zl

and of course the arithmetical properties we found for Rk(n) then ap-
ply to this summation also. Thus, also, in Theorem 12, our main in-
version theorem, we have several ways of expressing the coefficients
Rk(n) and Ak(n).

Some further consequences of Theorem 12 and the other expansions

in this paper will be presented later.
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LETTER TO THE EDITOR
B.G. BAUMGART

Glencoe, lllinois
Dear Sir:

In the article '"On the Periodicity of the Last Digits of the Fib-
onacci Numbers'' Vol. 1 No. 4, it was proved that for n 2 3 the n-th
digit (from the right) had a period of 1,5* 10" thus accounting for the
observation made at the University of Alaska on an IBM 1620; that the
last Fibonacci digit cycles every 60 numbers; the second to last digit,
every 300 numbers; the third, every 1500; the fourth, 15000; the fifth,
150000.

I,too,have observed the periodicity of the last Fibonacci digits on
anIBM 709 at Northwestern University (before discovering the Fibonacci
Quarterly). However, I also considered the so called:

Tribonacci Series
1,1,1,3,5,9,17,31,57,105, 193, 355, 653,1201, 2209, 4063, 7473. ..

and found that its last digit repeats every 31 numbers, its second to
last digit repeats every 620 numbers and its third to last digit repeats
every 6200 numbers;

Tetranacci Series
1,1,1,1, 4, 7,13, 25, 49, 94, 181, 349, 673, 1297, 2500, 4819, 9289. ..

and found that the last digit repeats every 1560 numbers as does the
second to the last digit. That is the period of the last and the second to
the last is the same. The periodof the third to last digit is 7800 and I
believe the period of the fourth to last digit is also 7800 but I can not
say for sure withmy present results (Igotallmy data from one program
whichtruncated at the fourth digit, at the time I was only thinking about
the very last digit. However, it will be easy to find out and I shall do
so when I get a chance. Actually, this sort of problem is a program-
mer's dream, because one may lose the most significant part of his
calculations with impunity. )

Pentanacci Series
1,1,1,1,1,5,9, 17, 33, 65,129, 253, 497, 977,1921, 3777, 7425, 14597...

(Continued on page 302.)



